Forest and Grassland Resources Research ›› 2024›› Issue (1): 111-124.doi: 10.13466/j.cnki.lczyyj.2024.01.015
• Technical Application • Previous Articles Next Articles
WU Hao1(), DENG Jiazhen1, HE Yaqin1, LIN Mingye1, YE Shaoming1,2,3()
Received:
2023-11-22
Revised:
2024-02-02
Online:
2024-02-28
Published:
2024-03-22
CLC Number:
WU Hao, DENG Jiazhen, HE Yaqin, LIN Mingye, YE Shaoming. Effects of Nitrogen and pH Treatment on Seedling Growth of Eucalyptus urophylla×E.grandis-Dallergia odorifera Intercropping Systems[J]. Forest and Grassland Resources Research, 2024, (1): 111-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2024.01.015
Tab.1
Root indexs of E.urophylla×E.grandis-D.odorifera treated with different N and pH
不同pH处理 | 树种 | 氮素水平 | 总根长/cm | 总根表面积/cm2 | 总根体积/cm3 | 平均根直径/mm |
---|---|---|---|---|---|---|
pH4.5 | 降香黄檀 D.odorifera | CK | 154.28±18.33Cc | 214.81±42.81Bb | 5.02±0.14Bb | 0.95±0.12Cb |
N1 | 270.58±21.89Bb | 440.87±18.73Aab | 12.95±0.18Aab | 2.35±0.08Aab | ||
N2 | 398.16±35.64Aa | 452.19±32.72Ab | 10.71±0.27Ab | 2.02±0.44ABc | ||
N3 | 343.91±20.61ABab | 286.25±87.40ABb | 9.66±2.09Aa | 1.67±0.23Bab | ||
尾巨桉 E.urophylla× E.grandis | CK | 234.40±47.07Bb | 251.22±43.45Bb | 6.61±0.88Bb | 0.87±0.09Ca | |
N1 | 290.22±33.02ABb | 381.34±66.48ABb | 8.71±0.48Bb | 1.03±0.31BCa | ||
N2 | 342.38±75.75Ab | 378.38±56.26Ab | 8.02±1.25Bc | 1.79±0.24ABa | ||
N3 | 556.59±38.10ABc | 445.17±26.24ABc | 14.89±0.89Abc | 2.12±0.33Aa | ||
pH5.5 | 降香黄檀 D.odorifera | CK | 309.01±27.12Ba | 403.81±42.81Ba | 10.52±1.13Aa | 1.91±0.22Aa |
N1 | 308.93±4.04Bab | 429.34±76.21Bab | 13.83±2.66Aab | 2.49±0.57Aab | ||
N2 | 520.50±49.45Aa | 557.48±24.68ABb | 14.99±0.43Aab | 2.90±0.03Ab | ||
N3 | 386.02±48.61Ba | 716.21±122.22Aa | 13.87±1.81Aa | 2.30±0.19Aa | ||
尾巨桉 E.urophylla× E.grandis | CK | 353.43±13.42Ba | 402.17±18.65Aa | 9.00±0.39Aa | 1.02±0.11Aa | |
N1 | 369.21±39.06ABb | 404.36±14.47Ab | 9.62±0.53Ab | 1.18±0.38Aa | ||
N2 | 500.77±41.15Aab | 417.82±72.48Ab | 14.04±0.18Aa | 1.95±0.21Aa | ||
N3 | 679.98±41.90ABb | 635.63±23.12Ab | 17.07±0.61Aab | 1.68±0.20Aa | ||
pH7.5 | 降香黄檀 D.odorifera | CK | 270.03±7.95Bab | 240.04±1.99Db | 7.08±0.23Cb | 1.10±0.27Bb |
N1 | 417.57±58.00ABa | 589.33±13.23Ba | 16.29±1.74Ba | 2.90±0.03Aa | ||
N2 | 541.57±66.43Aa | 741.51±47.26Aa | 21.05±1.77Aa | 3.33±0.19Aa | ||
N3 | 304.66±31.45Bab | 380.69±48.41Cb | 9.90±1.36Ca | 1.52±0.27Bab | ||
尾巨桉 E.urophylla× E.grandis | CK | 307.56±43.82Aab | 293.27±57.00Bab | 7.59±0.50Bab | 1.25±0.31Aa | |
N1 | 488.81±25.08Aa | 611.04±62.63Aa | 13.65±1.12Ba | 1.24±0.05Aa | ||
N2 | 548.91±39.15Aa | 689.13±83.67Ba | 14.68±0.67Aa | 1.69±0.20Aa | ||
N3 | 832.45±33.25Aa | 743.65±43.40Ba | 17.98±0.53Aa | 1.78±0.50Aa | ||
pH9.5 | 降香黄檀 D.odorifera | CK | 219.66±16.20Bb | 243.14±39.01Bb | 6.80±0.47Bab | 1.47±0.22Aab |
N1 | 269.90±26.88Bb | 333.77±93.33ABb | 9.72±1.24Bb | 1.66±0.32Ab | ||
N2 | 389.90±29.50Aa | 508.11±75.56Ab | 16.15±3.37Aab | 2.18±0.14Ac | ||
N3 | 260.77±21.05Bb | 393.18±48.42ABb | 8.59±0.88Ba | 1.44±0.28Ab | ||
尾巨桉 E.urophylla× E.grandis | CK | 227.59±2.98Ab | 336.68±13.82Aab | 7.59±0.08Cab | 1.51±0.30Ba | |
N1 | 323.56±34.24Ab | 361.67±34.07Ab | 8.62±0.32Cb | 0.96±0.10Ba | ||
N2 | 389.93±4.76Aab | 445.17±26.24Ab | 11.22±0.44Ab | 2.12±0.33Aa | ||
N3 | 422.74±18.96Ad | 457.19±13.16Ac | 13.40±1.03Bc | 1.75±0.13Aa |
Tab.2
Seeding leaves physiological enzyme activity of E.urophylla×E.grandis-D.odorifera treated with different N and pH U/g
不同pH处理 | 树种 | 氮素水平 | SOD | CAT | POD | NR |
---|---|---|---|---|---|---|
pH4.5 | 降香黄檀 D.odorifera | CK | 1 180.33±57.57Aa | 295.10±43.16Bb | 1.31±0.06Ca | 0.47±0.02Ab |
N1 | 1 251.00±31.88Ab | 374.83±3.49Bb | 1.71±0.07Ba | 0.71±0.09Aab | ||
N2 | 1 421.33±6.06Bb | 401.47±77.62Bb | 1.78±0.05ABb | 0.72±0.13Aa | ||
N3 | 1 638.33±33.49Ab | 535.53±38.00Ab | 1.93±0.05Ab | 0.66±0.11Aa | ||
尾巨桉 E.urophylla× E.grandis | CK | 1 145.00±22.00Cd | 262.57±8.03Bb | 1.25±0.02Ba | 0.50±0.00Ba | |
N1 | 1 479.67±28.53Bab | 505.10±35.81Aab | 1.39±0.04Bc | 0.54±0.00Bab | ||
N2 | 1 615.33±51.82Aa | 541.50±58.65Aab | 1.61±0.10Ab | 0.72±0.06Aab | ||
N3 | 1 565.33±25.96ABb | 538.13±28.37Ab | 1.75±0.02Ab | 0.81±0.18Aa | ||
pH5.5 | 降香黄檀 D.odorifera | CK | 1 164.67±61.74Da | 382.30±43.17Cab | 1.47±0.10Ba | 0.65±0.06Ba |
N1 | 1 452.33±21.28Ca | 465.97±39.15BCa | 1.82±0.08Ba | 0.70±0.01Aa | ||
N2 | 1 704.33±36.50Ba | 512.77±5.46Ba | 2.03±0.10Bab | 0.87±0.06Aa | ||
N3 | 1 886.00±74.84Aa | 664.27±31.01Aa | 3.14±0.46Aa | 0.96±0.03Aa | ||
尾巨桉 E.urophylla× E.grandis | CK | 1 316.33±72.17Cb | 416.13±49.37Ca | 1.34±0.06Ca | 0.55±0.01Ba | |
N1 | 1 520.67±6.33Bab | 561.77±26.68Ba | 1.57±0.01BCb | 0.81±0.05Ba | ||
N2 | 1 775.67±16.17Aa | 659.23±28.29ABa | 1.86±0.04Bab | 0.87±0.06Aa | ||
N3 | 1 768.00±28.10Aa | 700.10±51.26Aa | 2.54±0.18Aa | 0.85±0.04Aa | ||
pH7.5 | 降香黄檀 D.odorifera | CK | 1 260.67±26.35Da | 450.70±12.95Ca | 1.54±0.07Ca | 0.60±0.02Ba |
N1 | 1 503.67±27.42Ca | 519.57±25.27BCa | 1.84±0.06BCa | 0.83±0.02Aa | ||
N2 | 1 717.67±42.15Ba | 582.37±36.43Ba | 2.26±0.17Ba | 0.91±0.13Aa | ||
N3 | 1 911.33±20.54Aa | 682.50±9.41Aa | 3.51±0.26Aa | 0.92±0.03Aa | ||
尾巨桉 E.urophylla× E.grandis | CK | 1 430.00±1.00Ca | 465.83±8.47Ca | 1.23±0.06Ca | 0.60±0.06Ba | |
N1 | 1 580.00±64.6BCa | 565.97±18.23Ba | 1.75±0.08Ba | 0.66±0.03ABa | ||
N2 | 1 803.00±42.67Aa | 651.63±14.64ABb | 2.13±0.14ABa | 0.72±0.05ABab | ||
N3 | 1 722.67±65.28ABa | 693.80±53.67Aa | 2.55±0.21Aa | 0.80±0.03Aa | ||
pH9.5 | 降香黄檀 D.odorifera | CK | 993.33±40.60Cb | 333.03±45.54Cab | 1.32±0.02Ca | 0.46±0.03Bb |
N1 | 1 290.33±30.51Bb | 379.47±16.90BCb | 1.66±0.02Ba | 0.56±0.03Bb | ||
N2 | 1 454.33±53.20Ab | 491.73±13.05ABab | 1.75±0.04Bb | 0.63±0.06Ba | ||
N3 | 1 539.33±65.67Ab | 565.57±55.72Aab | 2.26±0.06Ab | 0.83±0.10Aa | ||
尾巨桉 E.urophylla× E.grandis | CK | 1 225.00±7.00Bc | 318.27±28.89Cb | 1.25±0.01Ba | 0.49±0.05Ba | |
N1 | 1 401.67±40.83Ab | 444.43±23.55Bb | 1.36±0.04Bc | 0.53±0.04Bb | ||
N2 | 1 371.67±87.25ABb | 497.67±31.48ABb | 1.69±0.01Ab | 0.62±0.05Bb | ||
N3 | 1 542.00±29.21Ab | 553.10±23.59Ab | 1.71±0.06Ab | 0.87±0.07Aa |
[1] |
Liu Shu, Qin Fangcuo, Yu Shixiao. Eucalyptus urophylla root-associated fungi can counteract the negative influence of phenolic acid allelochemicals[J]. Applied Soil Ecology, 2018, 127:1-7.
doi: 10.1016/j.apsoil.2018.02.028 |
[2] | 吕惠玲, 桉树人工林现状及可持续发展对策[J]. 农技服务, 2020, 37(11):115-116. |
[3] |
Liu Zhanfeng, Wu Jianping, Zhou Lixia, et al. Effect of understory fern(Dicranopteris dichotoma)removal on substrate utilization patterns of culturable soil bacterial communities in subtropical Eucalyptus plantations[J]. Pedobiologia, 2012, 55(1):7-13.
doi: 10.1016/j.pedobi.2011.07.014 |
[4] | 张煜星, 王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力[J]. 林业科学, 2023, 59(3):54-64. |
[5] | 邓海燕, 胡绍平, 莫晓勇, 等. 桉树人工混交林营造技术研究综述[J]. 桉树科技, 2017, 34(4):53-58. |
[6] |
Zhang Chenlu, Li Xiaowei, Chen Yuanqi, et al. Effects of Eucalyptus litter and roots on the establishment of native tree species in Eucalyptus plantations in South China[J]. Forest Ecology and Management, 2016, 375:76-83.
doi: 10.1016/j.foreco.2016.05.013 |
[7] | Qin Fangcuo, Yu Shixiao. Compatible mycorrhizal types contribute to a better design for mixed Eucalyptus plantations[J]. Frontiers in Plant Science, 2021,12. |
[8] | 邓海燕, 莫晓勇, 梅嘉仪, 等. 桉树人工混交林林分生长与土壤养分研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(1):95-102. |
[9] | Yao Xianyu, Zhang Qianchun, Zhou Haiju, et al. Introduction of Dalbergia odorifera enhances nitrogen absorption on Eucalyptus through stimulating microbially mediated soil nitrogen-cycling[J]. Forest Ecosystems, 2021, 8(4):789-800. |
[10] | 廖良宁, 汤文艳, 潘婷, 等. 施氮及根系分隔处理对间作尾巨桉和降香黄檀幼苗光合生理特性的影响[J]. 西南林业大学学报(自然科学), 2019, 39(2):60-69. |
[11] | 迟静娴, 徐方继, 刘译阳, 等. 豆科植物结瘤固氮及其分子调控机制的研究进展[J]. 山东农业科学, 2022, 54(3):155-164. |
[12] | 张小红, 马绍英, 李胜, 等. 接种根瘤菌对重茬豌豆土壤养分及酶活性的影响[J]. 土壤通报, 2022, 53(6):1360-1367. |
[13] |
柯丹霞, 徐勤朕, 杨娜, 等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报, 2019, 35(10):40-45.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0657 |
[14] | 袁浩亮, 龙泽东, 孙梅, 等. 国际土壤酸化研究知识图谱分析[J]. 土壤通报, 2022, 53(4):989-997. |
[15] | 玉峙强, 小梅, 杨振德, 等. 不同栽培基质对降香黄檀幼苗生长的影响[J]. 湖北农业科学, 2023, 62(4):98-102. |
[16] | 叶小玲, 蒙宇平, 梁天合, 等. 基于CiteSpace的桉树混交林发展现状分析[J]. 桉树科技, 2023, 40(3):78-85. |
[17] | 陈刚, 李胜. 植物生理学实验[M], 北京: 高等教育出版社, 2016. |
[18] | 杜梦柯, 连文婷, 张晓, 等, 氮处理对大豆根瘤固氮能力及GmLbs基因表达的影响[J]. 植物学报, 2021, 56(4):391-403. |
[19] |
Li Yuhe, Pei Yue, Shen Yitong, et al, Progress in the self-regulation system in legume nodule development-AON(Autoregulation of Nodulation)[J]. International Journal of Molecular Sciences, 2022, 23(12):6676.
doi: 10.3390/ijms23126676 |
[20] |
Lin Jieshun, Roswanjaya Y P, Kohlen W, et al, Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus[J]. Nature Communications, 2021, 12(1):6544.
doi: 10.1038/s41467-021-26820-9 pmid: 34764268 |
[21] |
Jeudy C, Ruffel S, Freixes S, et al, Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses[J]. The New phytologist, 2010, 185(3):817-828.
doi: 10.1111/nph.2010.185.issue-3 |
[22] |
柯丹霞, 徐勤朕, 杨娜, 等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报, 2019, 35(10),40-45.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0657 |
[23] |
Raquel P C, Bueno F J, Edson J Z, et al. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil[J]. Plant and Soil, 2018, 423(1/2):411-428.
doi: 10.1007/s11104-017-3521-5 |
[24] |
吴月, 隋新华, 戴良香, 等, 慢生根瘤菌及其与花生共生机制研究进展[J]. 中国农业科学, 2022, 55(8):1518-1528.
doi: 10.3864/j.issn.0578-1752.2022.08.004 |
[25] | 赵建涛, 杨开鑫, 马春晖, 等, 苜蓿叶片光合生理参数及抗氧化能力对施氮的响应[J]. 中国草地学报, 2023, 45(2):46-55. |
[26] | 李勇. 氮素营养对水稻光合作用与光合氮素利用率的影响机制研究[D], 南京: 南京农业大学, 2011. |
[27] | 李大勇, 徐克章, 董雅致, 等. 氮水平对不同大豆品种生理特性及产量的影响[J]. 大豆科学, 2013, 32(3):365-370. |
[28] |
Qiang Binbin, Zhou Weixin, Zhong Xingjie, et al. Effect of nitrogen application levels on photosynthetic nitrogen distribution and use efficiency in soybean seedling leaves[J]. Journal of Plant Physiology, 2023, 287:154051.
doi: 10.1016/j.jplph.2023.154051 |
[29] | 王倩倩, 刘志强, 陈康, 等. 不同土壤施磷和接种根瘤菌对大豆||玉米间作系统氮磷吸收的影响[J]. 中国生态农业学报(中英文), 2022, 30(12):1913-1924. |
[30] |
Wang Qianqian, Sheng Jiandong, Wang Youjuan, et al. The relative contribution of indigenous and introduced arbuscular mycorrhizal fungi and rhizobia to plant nutrient acquisition in soybean/maize intercropping in unsterilized soils[J]. Applied Soil Ecology, 2021, 168:104124.
doi: 10.1016/j.apsoil.2021.104124 |
[31] | 李强, 黄迎新, 周道玮, 等. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制[J]. 植物生态学报, 2021, 45(3):286-297. |
[32] | 魏婧, 徐畅, 李可欣, 等. 超氧化物歧化酶的研究进展与植物抗逆性[J]. 植物生理学报, 2020, 56(12):2571-2584. |
[33] | 赵龙飞, 徐亚军, 邵璇, 等. 两株内生芽孢杆菌对盐胁迫下大豆幼苗超氧化物歧化酶和过氧化物酶活性影响[J]. 微生物学通报, 2022, 49(5):1664-1677. |
[34] | 何建杨, 吴鑫雨, 周懂, 等. 间作调控小麦抗氧化酶活性及丙二醛含量降低小麦白粉病发生率[J]. 江苏农业科学, 2023, 51(11):113-119. |
[35] | 王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展[J]. 广西植物, 2020, 40(4):583-591. |
[36] |
Averina N G, Beyzaei Z, Shcherbakov R A, et al. Role of nitrogen metabolism in the development of salt tolerance in barley plants[J]. Russian journal of plant physiology, 2014, 61(1):97-104.
doi: 10.1134/S1021443713060022 |
[37] |
Bauduin S, Latini M, Belleggia I, et al. Interplay between Proline Metabolism and ROS in the Fine Tuning of Root-Meristem Size in Arabidopsis[J]. Plants, 2022, 11(11):1512.
doi: 10.3390/plants11111512 |
[38] |
Abramovitch R B, Anderson J C, Martin G B. Bacterial elicitation and evasion of plant innate immunity[J]. Nature Reviews Molecular Cell Biology, 2006, 7(8):601-611.
pmid: 16936700 |
[39] |
Jones K M, Kobayashi H, Davies B W, et al. How rhizobial symbionts invade plants:the Sinorhizobium-Medicago model[J]. Nature Reviews Microbiology, 2007, 5(8):619-633.
doi: 10.1038/nrmicro1705 |
[40] |
Portales-Reyes C, Van Doornik T, Schultheis E H, et al. A novel impact of a novel weapon:allelochemicals in Alliaria petiolata disrupt the legume-rhizobia mutualism[J]. Biological Invasions, 2015, 17(9):2779-2791.
doi: 10.1007/s10530-015-0913-4 |
[41] |
Batish D R, Lavanya K, Singh H P, et al. Phenolic allelochemicals released by Chenopodium murale affect the growth,nodulation and macromolecule content in chickpea and pea[J]. Plant Growth Regulation, 2007, 51(2):119-128.
doi: 10.1007/s10725-006-9153-z |
[42] |
Zhang Chenlu, Li Xiaowei, Chen Yuanqi, et al. Effects of Eucalyptus litter and roots on the establishment of native tree species in Eucalyptus plantations in South China[J]. Forest Ecology and Management, 2016, 375:76-83.
doi: 10.1016/j.foreco.2016.05.013 |
[43] |
Liu Shu, Qin Fangcuo, Zheng Yi, et al. Allelopathic effects of Eucalyptus urophylla on Legume-Rhizobium symbiosis[J]. Allelopathy Journal, 2019, 46(1):97-108.
doi: 10.26651/allelo.j/2019-46-1-1201 |
[1] | JIN Yu, PAN Cunde. Development Status and Countermeasures of Forest Fruit industry of Central Tarim Basin in Xinjiang [J]. FOREST RESOURCES WANAGEMENT, 2009, 0(2): 33-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||