FOREST RESOURCES WANAGEMENT ›› 2018›› Issue (6): 38-44.doi: 10.13466/j.cnki.lyzygl.2018.06.007
• Scientific Research • Previous Articles Next Articles
REN Yi1(), WANG Haibin2, XU Dengping2
Received:
2018-10-10
Revised:
2018-12-17
Online:
2018-12-28
Published:
2020-09-27
Tab.2
Modeling variable factors
变量类型 | 变量名称 | 计算公式 |
---|---|---|
植被指数 | 归一化植被指数NDVI | |
比值植被指数RVI | ||
差值植被指数DVI | ||
比值植被指数1 RVI54 | ||
比值植被指数2 RVI64 | ||
土壤植被指数SAVI | ||
优化土壤调整指数NLI | ||
大气抗阻植被指数ARVI | ||
增强植被指数EVI | ||
纹理特征 | 平均值 | |
方差 | ||
均一性 | ||
对比度 | ||
相异性 | ||
熵 | ||
角二阶矩 | ||
相关性 | ||
地形因子 | 海拔 | |
坡度 | ||
坡向 |
Tab.3
Pearson correlation coefficients between independent variables and arbor forest above ground biomass
变量 | 相关系数 | 变量 | 相关系数 | 变量 | 相关系数 |
---|---|---|---|---|---|
NDVI | 0.644** | Greenness | 0.306** | B6_Mean | -0.320** |
RVI | 0.678** | 海拔 | 0.321** | B6_Variance | -0.345** |
RVI54 | -0.400** | B1_Mean | -0.336** | B6_Contrast | -0.295** |
RVI64 | -0.398** | B2_Mean | -0.342** | B6_ | -0.277** |
SAVI | 0.644** | B3_Mean | -0.407** | B6_Entropy | -0.318** |
NLI | 0.387** | B3_Entropy | -0.321** | B6_Second | 0.285** |
ARVI | 0.646** | B3_Second | 0.316** | ||
PCA2 | -0.500** | B3_Correlation | 0.282** |
[1] | Cao Lin, CoopsNicholas C, Innes John L, et al. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data[J]. Remote Sensing of Environment, 2016,178:151-171. |
[2] | 范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2016,35(4):402-410. |
[3] | 王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算[J].农业机械学报, 2018(6):184-190. |
[4] | 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015,19(1):62-74. |
[5] |
Lu D, Chen Q, Wang G, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014,9(1):63-105.
doi: 10.1080/17538947.2014.990526 |
[6] | 戚玉娇. 大兴安岭森林地上碳储量遥感估算与分析[D]. 哈尔滨:东北林业大学, 2014. |
[7] | Lu, D., Chen Q., Wang, G., et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012,2012(2):1-16. |
[8] | 杜华强. 竹林生物量碳储量遥感定量估算[M]. 北京: 科学出版社, 2012. |
[9] | 韩爱惠. 森林生物量及碳储量遥感监测方法研究[D]. 北京:北京林业大学, 2009. |
[10] | 沈楚楚. 浙江省主要树种(组)生物量转换系数研究[D]. 杭州:浙江农林大学, 2013. |
[11] | 陶立超. 白马林场森林碳储量遥感估测[D]. 北京:北京林业大学, 2014. |
[12] | 许等平, 李晖, 智长贵, 等. 基于CEBERS-WFI遥感数据的森林生物量估测方法研究[J].林业资源管理, 2010(3):104-109. |
[13] |
Sarker L R, Nichol J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011,115(4):968-977.
doi: 10.1016/j.rse.2010.11.010 |
[14] |
Nichol J E, Sarker M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49:930-948.
doi: 10.1109/TGRS.2010.2068574 |
[15] |
王月婷, 张晓丽, 杨慧乔, 等. 基于Landsat 8卫星光谱与纹理信息的森林蓄积量估算[J]. 浙江农林大学学报, 2015,32(3):384-391.
doi: 10.11833/j.issn.2095-0756.2015.03.008 |
[16] |
Eckert S. Improved forest biomass and carbon estimations using texture measures from worldView-2 satellite data[J]. Remote Sensing, 2012,4(4):810-829.
doi: 10.3390/rs4040810 |
[17] |
Meng J H, Li S M, Wang W, et al. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images[J]. Remote Sensing, 2016,8(2):125.
doi: 10.3390/rs8020125 |
[18] |
Sarker L R, Nichol J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011,115(4):968-977.
doi: 10.1016/j.rse.2010.11.010 |
[19] | 王惠文, 吴载斌, 孟洁. 偏最小二成回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006. |
[20] | 张超, 彭道黎, 涂云燕, 等. 利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J]. 北京林业大学学报, 2013,35(3):11-17. |
[21] |
Li X C, Zhang Y J, Bao Y S, et al. Exploring the best hyperspectral Features for LAI estimation using partial least squares regression[J]. Remote Sensing, 2014,6(7):6221-6241.
doi: 10.3390/rs6076221 |
[22] |
Kelsey K C, Neff J C. Estimates of aboveground biomass from texture analysis of Landsat imagery[J]. Remote Sensing, 2014,6(7):6407-6422.
doi: 10.3390/rs6076407 |
[23] |
徐小军, 周国模, 杜华强, 等. 基于Landsat TM数据估算雷竹林地上生物量[J]. 林业科学, 2011,47(9):1-6.
doi: 10.11707/j.1001-7488.20110901 |
[1] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[2] | ZHANG Huifang, ZHU Yali, ZHANG Jinglu, GAO Jian, DILIXIATI·Baoerhan . Above-Ground Biomass Prediction of Arbor Forest in Altay Mountain Area Based on High-Resolution Remote Sensing Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 104-110. |
[3] | WANG Xiaoyang, JIANG Youyi, LI Xiao, HU Yaxuan, ZHANG Jiazheng, LIU Bowei. A Multi-Temporal and Multi-Feature Larch Plantation Extraction Study Based on GF-1 Images [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 109-118. |
[4] | HUANG Bingqian, YUE Cairong, ZHU Bodong. Estimation of Forest Volume Based on Multi-Scale Remote Sensing Features of GF-1 [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(3): 54-59. |
[5] | LONG Zhihao, LUO Peng, XU Dengping, LI Zhen, DAI Huabin. Inversion Research of Forest Stock Volume Using the Red Edge Bands of Sentinel-2A [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 126-134. |
[6] | ZHOU Zhifeng, WANG Yao, JIA Gang, YU Shiyong, GU Chenglong. Carbon Storage Status and Carbon Sequestration Potential Prediction of Arbor Forest in Hebei Province [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 45-53. |
[7] | YANG Dan, LI Chonggui, ZHANG Jiazheng. Research on Deep Learning Classification of Forest Types Based on Multi-temporal GF-1 Images [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 142-149. |
[8] | LIN Shuangshuang, ZHONG Jiusheng, HE Xin, JIANG Li, DUAN Jiwei, DAI Renli, HE Zhiyuan. Extraction Method of Urban Forest Land Information Based on Spectral Information [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 96-100. |
[9] | ZOU Quancheng, XU Jiannan, FENG Xiaochuan, MU Xiaowei, HU Bin, LIU Hailing, KONG Fanli, WU Jing. Study on Forest Landscape and Quality Improvement Based on Multiple Methods [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 36-44. |
[10] | DUAN Jiwei, ZHONG Jiusheng, JIANG Li, DAI Renli, HE Zhiyuan, LIN Shuangshuang, HE Xin. Study on Vegetation Extraction Method in Karst Areas Based on Visible Light Band of Sentinel 2 [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 143-152. |
[11] | LIU Hao, XU Dongmei. Study on the Dynamic Trend of Carbon Sinks in Arbor Forests in Shanxi Province [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(6): 49-54. |
[12] | LIN Lili, HAO Zhenbang, DAI Shanlin, YANG Liuqing, LIU Jian, YU Kunyong. Using Remote Sensing to Conduct Quantitative Study on the Quality of Typical Moso Bamboo Management Area in Southern Collective Forest Area [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(6): 84-90. |
[13] | LU Xianjian, HUANG Yuhui, YAN Hongbo, ZHOU Lv, WU Chenlong, ZHOU Bin, LUO Le. Study on Rapid Extraction of Eucalyptus Vegetation Information in Guangxi Based on GEE [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(5): 52-60. |
[14] | BA Yindelehei, BAO Xiang, ZHOU Mei, ZHAO Pengwu, SHI Liang, HAO Liangjie. Temporal and Spatial Variation Characteristics of Vegetation Cover on the Northern Slope of Daxing'anling Based on MODIS NDVI [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 50-56. |
[15] | WANG Hailong, LIU Xuehui, WEN Xiaorong, GAO Changjian, SHE Guanghui, MENG Xue, LI Yun. Dynnmic Changes of Coastal Wetland Types with Taking Seasonal Rhythms into Account [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(2): 58-64. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||