FOREST RESOURCES WANAGEMENT ›› 2019›› Issue (2): 73-79.doi: 10.13466/j.cnki.lyzygl.2019.02.011
• Scientific Research • Previous Articles Next Articles
WU Heng(), ZHU Liyan, LIU Zhijun, WU Xueqiong
Received:
2019-01-04
Revised:
2019-03-26
Online:
2019-04-28
Published:
2020-09-22
CLC Number:
WU Heng, ZHU Liyan, LIU Zhijun, WU Xueqiong. Study of Data Updating for Forestry Land Resources on Single Map Based on Growth Model[J]. FOREST RESOURCES WANAGEMENT, 2019, (2): 73-79.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2019.02.011
Tab.1
Statistics of samples for modeling
树种 | 样本量 | 林分因子(平均值±标准差) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均年龄 A/(a) | 平均树高 HD/(m) | 平均胸径 Dg/(cm) | 公顷株数 N/(株/hm2) | 公顷断面积 G/(m2/hm2) | 公顷蓄积 V/(m3/hm2) | |||||||||||
华山松 | 19275 | 25±9.68 | 8.6±2.92 | 13.6±4.68 | 997±763.06 | 11.5314±6.33 | 54.2880±36.96 | |||||||||
云南松 | 35821 | 25±7.45 | 7.7±2.35 | 11.7±3.41 | 1064±616.26 | 10.0465±4.48 | 41.2364±22.76 | |||||||||
麻栎 | 244 | 24±11.60 | 7.7±2.31 | 10.5±3.90 | 1280±696.06 | 9.5700±4.66 | 38.7848±23.40 | |||||||||
桤木 | 12788 | 22±7.93 | 11.5±2.84 | 16.7±4.77 | 580±405.51 | 10.6815±4.57 | 55.4405±30.39 | |||||||||
银荆树 | 3737 | 15±5.64 | 8.8±2.29 | 12.4±3.61 | 869±566.13 | 8.8416±3.83 | 39.7316±21.16 | |||||||||
赤桉 | 808 | 15±7.08 | 10.1±2.55 | 11.9±4.82 | 978±407.19 | 9.9267±5.35 | 49.8542±31.34 | |||||||||
直杆桉 | 1814 | 10±4.03 | 10.3±2.68 | 10.3±3.58 | 2083±1106.20 | 14.2680±5.37 | 42.9819±23.59 | |||||||||
蓝桉 | 5112 | 12±6.34 | 11.3±3.51 | 12.1±5.22 | 1419±1094.16 | 11.3683±5.49 | 62.3831±38.30 | |||||||||
柳杉 | 85 | 15±6.32 | 8.3±3.12 | 11.0±4.40 | 1401±717.66 | 11.5562±5.90 | 53.6647±36.47 | |||||||||
树种 | 样本量 | 林分因子(平均值±标准差) | ||||||||||||||
平均年龄 A/(a) | 平均树高 HD/(m) | 平均胸径 Dg/(cm) | 公顷株数 N/(株/hm2) | 公顷断面积 G/(m2/hm2) | 公顷蓄积 V/(m3/hm2) | |||||||||||
冷杉 | 53 | 85±33.16 | 12.2±3.42 | 26.4±10.37 | 389±249.20 | 17.6247±9.80 | 125.7094±74.28 | |||||||||
板栗 | 188 | 13±5.62 | 5.0±1.46 | 9.9±2.80 | 529±370.16 | 3.7708±2.35 | 9.7255±6.64 | |||||||||
核桃 | 450 | 15±8.38 | 5.8±2.66 | 10.1±5.33 | 734±539.68 | 4.7863±3.44 | 16.2484±15.76 | |||||||||
香椿 | 33 | 18±8.48 | 8.6±3.09 | 13.6±5.85 | 722±609.09 | 6.3136±3.02 | 25.1030±12.02 | |||||||||
青冈栎 | 43 | 27±9.88 | 6.4±1.63 | 10.4±3.13 | 1287±645.97 | 9.6068±3.85 | 33.1465±16.61 | |||||||||
油杉 | 2847 | 31±11.55 | 9.0±2.80 | 15.6±5.05 | 694±467.55 | 11.0017±5.35 | 50.7946±31.10 | |||||||||
杉木 | 148 | 23±12.35 | 10.9±4.31 | 15.4±6.40 | 1084±920.90 | 15.0012±9.02 | 80.7264±57.83 | |||||||||
栎类 | 19165 | 35±11.98 | 7.2±2.22 | 10.8±3.89 | 1317±843.01 | 9.9887±4.40 | 35.4861±20.47 | |||||||||
柏类 | 3799 | 22±10.65 | 9.3±2.96 | 12.1±4.44 | 1162±876.88 | 10.7501±6.35 | 52.8504±39.76 | |||||||||
桉类 | 6430 | 10±4.60 | 10.7±2.80 | 10.7±3.09 | 1588±856.57 | 12.4839±5.47 | 57.7253±31.19 | |||||||||
樟类 | 140 | 9±5.24 | 5.2±1.89 | 10.0±2.98 | 1317±788.14 | 8.4986±3.57 | 22.0836±11.87 | |||||||||
杨类 | 525 | 15±8.14 | 10.4±3.66 | 13.9±6.56 | 962±785.81 | 9.8473±5.30 | 52.9768±36.15 | |||||||||
柳类 | 39 | 9±3.90 | 6.5±2.01 | 11.3±4.03 | 1038±662.08 | 7.9221±4.33 | 28.0487±20.23 | |||||||||
硬阔 | 76 | 25±12.12 | 8.2±2.60 | 12.0±5.65 | 1135±698.13 | 9.4582±4.32 | 35.0684±20.51 | |||||||||
软阔 | 407 | 16±9.21 | 6.3±1.97 | 9.1±4.38 | 1473±849.23 | 7.9546±4.51 | 27.7371±21.26 |
Tab.2
Fitting results of average height growth
树种 | 模型 | 参数 | 拟合决定系数 R2 | 均方根误差 RMSE | ||||
---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | ||||||
华山松 | (3) | 15.1668 | 0.0281 | 0.7680 | 0.39 | 2.28 | ||
云南松 | (3) | 13.0147 | 0.0300 | 0.8095 | 0.27 | 2.01 | ||
麻栎 | (3) | 13.8793 | 0.0159 | 0.4869 | 0.38 | 1.83 | ||
桤木 | (3) | 14.9788 | 0.0558 | 0.6606 | 0.28 | 2.41 | ||
银荆树 | (3) | 10.4580 | 0.1235 | 0.7203 | 0.21 | 2.04 | ||
赤桉 | (3) | 20.2454 | 0.0197 | 0.4937 | 0.58 | 1.65 | ||
直杆桉 | (3) | 16.1709 | 0.0810 | 0.7090 | 0.46 | 1.97 | ||
蓝桉 | (3) | 22.7242 | 0.0232 | 0.4681 | 0.43 | 2.65 | ||
柳杉 | (3) | 41.4959 | 0.00631 | 0.6578 | 0.45 | 2.34 | ||
冷杉 | (2) | 16.2595 | 21.0431 | 0.23 | 3.03 | |||
板栗 | (3) | 9.5914 | 0.0263 | 0.5068 | 0.39 | 1.14 | ||
核桃 | (3) | 19.6944 | 0.0127 | 0.6854 | 0.46 | 1.95 | ||
香椿 | (3) | 14.1646 | 0.0570 | 0.9812 | 0.64 | 1.94 | ||
青冈栎 | (3) | 7.0517 | 0.1742 | 3.3704 | 0.30 | 1.39 | ||
油杉 | (3) | 18.5254 | 0.0125 | 0.6168 | 0.31 | 2.32 | ||
杉木 | (3) | 15.5477 | 0.0807 | 1.4011 | 0.53 | 2.97 | ||
栎类 | (3) | 19.2691 | 0.00464 | 0.5053 | 0.28 | 1.89 | ||
柏类 | (3) | 15.7162 | 0.0334 | 0.7062 | 0.51 | 2.07 | ||
桉类 | (3) | 19.0674 | 0.0246 | 0.3723 | 0.28 | 2.60 | ||
樟类 | (3) | 22.2570 | 0.00787 | 0.5197 | 0.53 | 1.30 | ||
杨类 | (3) | 19.1314 | 0.0377 | 0.6584 | 0.56 | 2.42 | ||
柳类 | (3) | 8.0315 | 0.4003 | 3.9954 | 0.54 | 1.40 | ||
硬阔 | (3) | 16.0533 | 0.00852 | 0.3915 | 0.25 | 2.28 | ||
软阔 | (3) | 13.2752 | 0.0141 | 0.4302 | 0.43 | 1.49 |
Tab.3
Fitting results of DBH growth
树种 | 模型 | 优化算法 | 参数 | 决定系数 R2 | 均方根误差 RMSE | ||||
---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | |||||
华山松 | (6) | LM | 10.8455 | 0.6833 | 0.6178 | 0.00482 | -0.1040 | 0.75 | 2.32 |
云南松 | (6) | LM | 7.8019 | 0.6224 | 0.6790 | 0.0112 | -0.1027 | 0.68 | 1.91 |
麻栎 | (5) | LM | 4.0071 | 0.7257 | 12.0648 | 0.0745 | 0.58 | 2.52 | |
桤木 | (6) | DE | 4.7759 | 0.7033 | 0.7066 | 0.0328 | -0.0899 | 0.64 | 2.87 |
银荆树 | (5) | SA | 4.5477 | 0.6201 | 5.5581 | 0.1708 | 0.53 | 2.47 | |
赤桉 | (5) | SA | 3.2852 | 0.9645 | 11.1999 | 0.0376 | 0.75 | 2.41 | |
直杆桉 | (6) | SA | 4.6389 | 0.7019 | 0.5840 | 0.0244 | -0.5045 | 0.73 | 1.86 |
蓝桉 | (6) | SA | 6.4954 | 0.7307 | 0.6709 | 0.0150 | -0.2371 | 0.70 | 2.84 |
柳杉 | (5) | SA | 4.0571 | 0.7264 | 9.4807 | 0.2345 | 0.69 | 2.45 | |
冷杉 | (6) | DE | 4.0749 | 0.9157 | 3.3569 | 0.0367 | -0.1298 | 0.73 | 5.36 |
板栗 | (5) | GA | 4.4890 | 0.6394 | 4.6323 | 0.2066 | 0.37 | 2.21 | |
核桃 | (5) | SA | 4.2648 | 0.8599 | 12.8270 | 0.1155 | 0.68 | 3.03 | |
香椿 | (5) | SA | 8.7220 | 0.5893 | 13.9018 | 0.0545 | 0.77 | 2.74 | |
青冈栎 | (6) | DE | 2.4397 | 0.9106 | 1.0877 | 0.0534 | -0.6418 | 0.73 | 1.60 |
油杉 | (6) | GA | 5.4105 | 0.6570 | 1.1692 | 0.0381 | -0.1649 | 0.61 | 3.14 |
杉木 | (6) | SA | 7.2310 | 0.5564 | 0.7295 | 0.0213 | -0.2054 | 0.72 | 3.38 |
栎类 | (5) | SA | 3.9222 | 0.8444 | 19.9179 | 0.2011 | 0.64 | 2.32 | |
柏类 | (5) | DE | 4.3003 | 0.7122 | 12.1546 | 0.1889 | 0.65 | 2.64 | |
桉类 | (6) | SA | 7.3332 | 0.5246 | 0.4962 | 0.0182 | -0.2289 | 0.57 | 2.03 |
樟类 | (5) | GA | 5.7169 | 0.4295 | 3.3318 | 0.0963 | 0.46 | 2.18 | |
杨类 | (5) | GA | 2.7901 | 0.8940 | 9.2532 | 0.1254 | 0.69 | 3.63 | |
柳类 | (6) | SA | 5.5724 | 0.5869 | 0.4133 | 0.0203 | -0.8753 | 0.53 | 2.73 |
硬阔 | (5) | LM | 3.1190 | 0.9564 | 17.8099 | 0.3883 | 0.78 | 2.65 | |
软阔 | (5) | LM | 2.9609 | 0.9373 | 8.8210 | -0.1039 | 0.67 | 2.50 |
Tab.4
Fitting results of volume growth per hectare
树种 | 模型 | 优化算法 | 参数 | 决定系数 R2 | 均方根误差 RMSE | ||||
---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | |||||
华山松 | (9) | DE | 17.1334 | 1.2746 | 0.8622 | 0.0131 | 1.1318 | 0.84 | 14.83 |
云南松 | (9) | DE | 21.1359 | 1.0721 | 0.9506 | 0.0150 | 0.9120 | 0.75 | 11.28 |
麻栎 | (9) | LM | 7.0483 | 1.4570 | 0.8847 | 0.0209 | 1.1015 | 0.88 | 8.20 |
桤木 | (9) | SA | 8.4539 | 1.2093 | 0.7469 | 0.0508 | 1.3951 | 0.80 | 13.50 |
银荆树 | (9) | GA | 5.8544 | 1.2667 | 0.5253 | 0.0973 | 1.9580 | 0.90 | 6.85 |
赤桉 | (8) | DE | 5.5150 | 1.5964 | 11.0404 | -0.8641 | 0.89 | 10.43 | |
直杆桉 | (9) | DE | 5.2999 | 1.2063 | 1.0950 | 0.0771 | 0.5384 | 0.44 | 17.58 |
蓝桉 | (10) | LM | 15.4872 | 1.1068 | 2.7912 | 0.7369 | 0.9199 | 0.90 | 12.22 |
柳杉 | (9) | LM | 5.3468 | 1.6062 | 1.5521 | 0.0397 | 0.6727 | 0.87 | 13.25 |
冷杉 | (9) | DE | 15.6744 | 1.2854 | 1.2981 | 0.0246 | 1.0311 | 0.90 | 23.77 |
板栗 | (10) | LM | 15.2051 | 0.7666 | 2.8477 | -0.0602 | -14.3813 | 0.76 | 3.22 |
核桃 | (8) | DE | 1.7533 | 1.8237 | 10.7001 | -0.6340 | 0.67 | 9.07 | |
香椿 | (9) | GA | 4.5609 | 1.3186 | 1.3461 | 0.1539 | 1.0282 | 0.91 | 3.49 |
青冈栎 | (9) | DE | 1.8143 | 1.7940 | 2.8177 | 0.1294 | 1.0254 | 0.87 | 5.95 |
油杉 | (9) | LM | 7.8986 | 1.2715 | 1.0878 | 0.0445 | 1.0375 | 0.81 | 13.51 |
杉木 | (9) | LM | 24.6427 | 1.2005 | 0.7667 | 0.00764 | 1.3378 | 0.88 | 19.72 |
栎类 | (9) | SA | 11.2639 | 1.3207 | 0.8079 | 0.0152 | 1.2031 | 0.81 | 8.81 |
柏类 | (9) | DE | 13.1660 | 1.4416 | 0.7975 | 0.0105 | 1.1880 | 0.88 | 14.02 |
桉类 | (9) | SA | 20.6393 | 1.0217 | 0.5925 | 0.0178 | 1.4960 | 0.70 | 17.10 |
樟类 | (10) | GA | 12.9508 | 1.2688 | 3.6974 | 0.4638 | 1.0563 | 0.85 | 4.57 |
杨类 | (9) | LM | 9.6032 | 1.4134 | 1.0108 | 0.0274 | 0.9626 | 0.91 | 10.95 |
柳类 | (9) | DE | 10.6262 | 1.5481 | 0.8039 | 0.0203 | 1.1967 | 0.92 | 5.80 |
硬阔 | (10) | SA | 1.3499 | 1.9176 | 2.6431 | 0.6904 | 1.1924 | 0.85 | 7.99 |
软阔 | (10) | GA | 9.9638 | 1.6509 | 4.0322 | 1.6472 | 0.2881 | 0.91 | 6.37 |
Tab.5
Model link results of stand growth for Pinus yunnanensis
年龄/a | 树高/m | 胸径/cm | 断面积/ (m2/hm2) | 株数/ (株/hm2) | 单木蓄积量/ (m3/株) | 蓄积量/ (m3/hm2) | 蓄积平均生长量/ (m3/hm2) | 蓄积 生长率/% |
---|---|---|---|---|---|---|---|---|
10 | 6.1 | 8.2 | 9.25 | 1745 | 0.0181 | 31.6090 | 3.1609 | |
20 | 9.6 | 12.7 | 13.03 | 1036 | 0.0563 | 58.3975 | 2.9199 | 4.99 |
30 | 12.0 | 16.0 | 15.90 | 787 | 0.1044 | 82.1362 | 2.7379 | 3.02 |
40 | 13.7 | 18.8 | 18.29 | 659 | 0.1568 | 103.3647 | 2.5841 | 2.10 |
50 | 14.9 | 21.1 | 20.38 | 583 | 0.2099 | 122.4301 | 2.4486 | 1.58 |
Tab.6
Model link results of stand growth for Quercus acutissima
年龄/a | 树高/m | 胸径/cm | 断面积/ (m2/hm2) | 株数/ (株/hm2) | 单木蓄积量/ (m3/株) | 蓄积量/ (m3/hm2) | 蓄积平均生长量/ (m3/hm2) | 蓄积 生长率/% |
---|---|---|---|---|---|---|---|---|
10 | 6.4 | 5.9 | 5.4936 | 2026 | 0.0072 | 14.6432 | 1.4643 | |
20 | 9.0 | 12.7 | 6.5878 | 521 | 0.0486 | 25.3025 | 1.2651 | 10.67 |
30 | 10.9 | 16.4 | 7.2701 | 344 | 0.1007 | 34.6564 | 1.1552 | 6.24 |
40 | 12.5 | 18.6 | 7.7714 | 284 | 0.1517 | 43.1628 | 1.0791 | 4.37 |
50 | 13.8 | 20.1 | 8.1694 | 256 | 0.1990 | 51.0296 | 1.0206 | 3.34 |
[1] | 许等平, 李晖, 庞丽杰, 等. 全国林地“一张图”数据库建设及扩展应用[J].林业资源管理, 2015(5):36-43. |
[2] | Means J E, Acker S A, Fitt B J, et al. Predicting forest stand characteristics with airborne scanning lidar[J]. Photogrammetric Engineering & Remote Sensing, 2000,66(11):1367-1371. |
[3] | 李崇贵, 赵宪文, 李春干. 森林蓄积量遥感估测理论与实现[M]. 北京: 科学出版社, 2006. |
[4] | Weiskittel A R, Hann D W, Kershaw Jr J A.Forest Growth and Yield Modeling[M]. Wiley, 2011. |
[5] | 曾伟生, 蒲莹, 杨学云. 再论全国森林资源年度出数方法[J].林业资源管理, 2015(6):10-15. |
[6] | 吴达胜. 基于多源数据和神经网络模型的森林资源蓄积量动态监测[D]. 杭州:浙江大学, 2014. |
[7] | 谭炳香, 杜纪山. 遥感与GIS相结合的森林资源信息更新与制图方法研究[J].林业科学研究, 2001(6):692-696. |
[8] | 唐守正, 李希菲, 孟昭和. 林分生长模型研究的进展[J].林业科学研究, 1993(6):672-679. |
[9] | 吴恒, 朱丽艳, 李华, 等. 昆明市4个主要针叶树种林分断面积生长模型研究[J]. 西南林业大学学报:自然科学, 2018,38(4):119-125. |
[10] | 印红群. 森林资源蓄积量监测模型研究——以浙江省台州市黄岩区为例[D]. 临安:浙江农林大学, 2013. |
[11] | 卢志伟, 李清顺. 用林分生长模型更新松树小班平均胸径和树高因子研究[J].西南林学院学报, 2010(4):6-10. |
[1] | WANG Wenjun, LI Lianfang, LI Xiaojun, HOU Haixiong, LIU Xian, ZHANG Heyao, GU Meng, ZHOU Dongmei. Research on the Growth Model of a 21-Year-Old Betula alnoides Plantation with Different Planting Densities [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 53-61. |
[2] | ZENG Weisheng. Development of Carbon Growth Models and Analysis of Carbon Sequestration Capacity for Larch Forest Stands in the Northeast of China [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 18-23. |
[3] | HE Peng, CHEN Zhenxiong, LIU Xianzhao. Developing Stand Basal Area Growth Models for Pinus massoniana and Cunninghamia lanceolata in Hunan Province [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 56-61. |
[4] | LIU Yongjie, LI Hui. Study on Forest Land Data Updating Synchronization Based on GeoSOT Global Subdivision Grid [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 149-153. |
[5] | WANG Qingjie, LI Guodong, LIU Xiaoman, AN Bowen, JI Huaifeng. Study on Populus euphratica Growth Model in Tarim River Basin [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(5): 100-107. |
[6] | MIN Zhiqiang, HU Yunyun, WANG Dejun, SUN Jingmei, LI Hongtao, LI Weizhong. Study on Growth Model of DBH and Height Based on Dummy Variable for Natural oak Forest in Qinba Mountain Area [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(5): 89-99. |
[7] | TIAN Yi, WU Hongwei, ZHANG Weizhi, HUANG Guangcan, ZHUANG Chongyang, JIANG Xidian. A study on Compatible System of Diameter Growth Models and Height-diameter Curve Model for Castanopsis carlesii Forest in Fuzhou [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(4): 44-49. |
[8] | ENG Qilong, CHEN Zhefu, CHEN Duanlv. A Study on the Growth Model of Individual Trees in Natural Mixed Forests of Oak and Pinus Massoniana in Hunan [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 94-102. |
[9] | WU Hongwei, TIAN Yi, HUANG Guangcan, ZHANG Weizhi, ZHUANG Chongyang, JIANG Xidian. A Growth Model for Pinus elliottii Based on the Nonlinear Measurement Error Method [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(6): 69-74. |
[10] | MENG Degan, YU Haoran, LIU Jian, GUO Jiachen, CAI Chao, LI Yang, ZHANG Xiao. Growth Regularities of Three Dominant Natural Forest Types in the Changbai Mountains [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(3): 147-150. |
[11] | SA Rula, XU Jiarui, WANG Zhihui, ZHANG Ke, YU Xianjun. Study on Tree Growth Model of Larix Gmelinii Plantation Based on Trunk Analysis [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 88-92. |
[12] | CHEN Chen, LIU Guangwu, SHEN Jiemei, GAO Fuling. Establishment of Height Model for Natural Secondary Quercus variabilis Forest in Taihang Mountains [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 146-149. |
[13] | XU Qihu, LIN Liping, XUE Chunquan, LUO Yong, YANG Jiazhi, LEI Yuancai. Height-Age Growth Model for Liquidambar formosana in Guangdong Using the Classified Height Method [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(5): 47-53. |
[14] | HUO Zhenjiang. Research on the Update of Sub-compartment Resources Archives Based on the Dynamic Growth Model of Forest Stands [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(1): 141-147. |
[15] | LIU Sihai, ZENG Weisheng. Large-scale Individual Tree Growth Models for Pinus massoniana in China [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(2): 28-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||