FOREST RESOURCES WANAGEMENT ›› 2019›› Issue (6): 101-107.doi: 10.13466/j.cnki.lyzygl.2019.06.018
• Scientific Research • Previous Articles Next Articles
FENG Xiaochuan1(), CAO Xinguang2(), JU Wenhua3, LIU kaimei4
Received:
2019-10-24
Revised:
2019-11-21
Online:
2019-12-28
Published:
2020-05-09
Contact:
CAO Xinguang
E-mail:fengxc1335@126.com;caoxinguang@163.com
CLC Number:
FENG Xiaochuan, CAO Xinguang, JU Wenhua, LIU kaimei. A Study on Community Characteristics of Forest Soil Bacteria in Lushan National Nature Reserve[J]. FOREST RESOURCES WANAGEMENT, 2019, (6): 101-107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2019.06.018
Tab.1
Basic information of sample sites
样品编号 | 取样位置 | 经纬度 | 海拔/m | 土壤类型 | 森林植被类型 | 主要层优势植物 |
---|---|---|---|---|---|---|
HHP-H1 | 好汉坡 | 29°35'57″N,115°59'15″E | 570 | 山地黄壤 | 常绿阔叶林 | 微毛柃、大青、青冈 |
HHP-H2 | 好汉坡 | 29°35'45″N,115°39'11″E | 680 | 山地黄壤 | 常绿阔叶林 | 微毛柃、大青、青冈 |
HHP-H3 | 好汉坡 | 29°35'33″N,115°59'09″E | 776 | 山地黄壤 | 常绿阔叶林 | 微毛柃、大青、青冈 |
HLS-H4 | 黄龙寺 | 29°33'06″N,115°57'50″E | 975 | 山地黄棕壤 | 常绿与落叶阔叶混交林 | 毛竹、小叶白辛树、樟树 |
DYS-H5 | 大月山 | 29°33'53″N,115°59'04″E | 1250 | 山地棕壤 | 针阔混交林 | 短柄枹、花柏;微毛柃 |
WLF-H6 | 五老峰 | 29°32'55″N,116°00'49″E | 1350 | 山地棕壤 | 针叶林 | 黄山松、杜娟 |
Tab.3
Estimated OUT richness,diversity indices and estimated sample coverage for 16S rRNA libraries of Antarctic soil samples
样品编号 | 优化序列 | OTUs数/个 | Chao 1指数 | Simpson指数 | Shannon指数 |
---|---|---|---|---|---|
HHP-H1 | 23031 | 342 | 375.454 | 0.972 | 6.266 |
HHP-H2 | 25314 | 343 | 352.282 | 0.980 | 6.520 |
HHP-H3 | 22071 | 346 | 355.692 | 0.973 | 6.331 |
HLS-H4 | 22947 | 366 | 382.912 | 0.985 | 6.856 |
DYS-H5 | 21144 | 325 | 340.857 | 0.976 | 6.433 |
WLF-H6 | 22206 | 360 | 384.972 | 0.981 | 6.630 |
[1] |
Verburg P S J, Dam D V, Hefting M M, et al. Microbial transformations of C and N in a boreal forest floor as affected by temperature[J]. Plant and Soil, 1999,208(2):187-197.
doi: 10.1023/A:1004462324452 |
[2] |
Reed S C, Townsend A R, Nemergut C D R. Microbial community shifts influence patterns in tropical forest nitrogen fixation[J]. Oecologia, 2010,164(2):521-531.
doi: 10.1007/s00442-010-1649-6 pmid: 20454976 |
[3] |
Leckie S E. Methods of microbial community profiling and their application to forest soils[J]. Forest Ecology and Management, 2005,220(1-3):88-106.
doi: 10.1016/j.foreco.2005.08.007 |
[4] |
Krivtsov V, Bezginova T, Salmond R, et al. Ecological interactions between fungi,other biota and forest litter composition in a unique Scottish woodland[J]. Forestry, 2006,79(2):201-216.
doi: 10.1093/forestry/cpi066 |
[5] |
Kulhánková A, Béguiristain T, Moukoumi J, et al. Spatial and temporal diversity of wood decomposer communities in different forest stands,determined by ITS rDNA targeted TGGE[J]. Annals of Forest Science, 2006,63(5):547-556.
doi: 10.1051/forest:2006037 |
[6] |
Courty P E, Buée M, Diedhiou A G, et al. The role of ectomycorrhizal communities in forest ecosystem processes:New perspectives and emerging concepts[J]. Soil Biology & Biochemistry, 2010,42(5):679-698.
doi: 10.1016/j.soilbio.2009.12.006 |
[7] |
Allen A S, Schlesinger W H. Nutrient limitations to soil microbial biomass and activity in loblolly pine forests[J]. Soil Biology & Biochemistry, 2004,36(4):581-589.
doi: 10.1016/j.soilbio.2003.12.002 |
[8] |
Carson J K, Campbell L, Rooney D, et al. Minerals in soil select distinct bacterial communities in their microhabitats[J]. FEMS Microbiology Ecology, 2009,67(3):381-388.
doi: 10.1111/j.1574-6941.2008.00645.x pmid: 19187213 |
[9] |
Lipson D A. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients[J]. FEMS microbiology ecology, 2007,59(2):418-427.
doi: 10.1111/j.1574-6941.2006.00240.x pmid: 17328121 |
[10] | Gömöryová E, Hrivnák R, Janišová M, et al. Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest[J]. Applied Soil Ecology, 2009,43(2-3):0-199. |
[11] | Balser T C, Firestone M K. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest[J]. Biogeochemistry(Dordrecht), 2005,73(2):395-415. |
[12] |
Rösch C, Bothe H. Diversity of total,nitrogen-fixing and denitrifying bacteria in an acid forest soil[J]. European Journal of Soil Science, 2009,60(6):883-894.
doi: 10.1111/j.1365-2389.2009.01167.x |
[13] |
刘驰, 李家宝, 芮俊鹏, 等. 16S rRNA基因在微生物生态学中的应用[J]. 生态学报, 2015,35(9):2769-2788.
doi: 10.5846/stxb201306181726 |
[14] |
Ligi T, Oopkaup K, Truu M, et al. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing[J]. Ecological Engineering, 2014,72:56-66.
doi: 10.1016/j.ecoleng.2013.09.007 |
[15] | 李晨华, 张彩霞, 唐立松, 等. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J]. 微生物学报, 2014,54(3):319-329. |
[16] | 白晓旭, 史荣久, 尤业明, 等. 河南宝天曼不同林龄与林型森林土壤的细菌群落结构与多样性[J]. 应用生态学报, 2015,26(8):2273-2281. |
[17] |
Abril A B and Bucher E H. Variation in Soil Biological Characteristics on an Elevational Gradient in the Montane Forest of North-West Argentina[J]. Journal of Tropical Ecology, 2008,24(4):457-461.
doi: 10.1017/S0266467408005154 |
[18] |
Lin Yute, Huang Yuju, Tang Senlin, et al. Bacterial Community Diversity in Undisturbed Perhumid Montane Forest Soils in Taiwan[J]. Microbial Ecology, 2010,59(2):369-378.
doi: 10.1007/s00248-009-9574-0 pmid: 19727930 |
[19] | 刘光荣. 旅游干扰对庐山风景区微生物多样性的影响[J]. 山东农业大学学报:自然科学版, 2015,46(2):274-279. |
[20] | 姚协丰. 庐山亚热带森林生态系统六种不同类型土壤细菌多样性青枯病生防细菌筛选及降解二氯苯胺机理研究[D]. 南京:南京农业大学, 2010. |
[21] | 陆杨森, 熊金莲, 张明. 庐山土壤微生物类群及酶活特性[J]. 生态学杂志, 1993,12(5):25-28. |
[22] | 张洪霞. 土壤微生物多样性研究的DGGE/TGGE技术进展[J]. 核农学报, 2009,23(4):721-727. |
[23] | 刘信中, 王琅. 江西省庐山自然保护区生物多样性考察与研究[M]. 北京: 科学出版社, 2010: 111-243. |
[24] |
Zhang Jiajie, Kobert K, Flouri Tomáš, et al. PEAR:a fast and accurate Illumina Paired-End reAdmergeR[J]. Bioinformatics, 2014,30(5):614-620.
doi: 10.1093/bioinformatics/btt593 pmid: 24142950 |
[25] | Vasileiadis S, Puglisi E, Arena M, et al. Soil Bacterial Diversity Screening Using Single 16S rRNA Gene V Regions Coupled with Multi-Million Read Generating Sequencing Technologies[J]. PLOS ONE, 2012,7(8):1-11. |
[26] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010,7(5):335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131 |
[27] |
Ahn J, Sinha R, Pei Z, et al. Human Gut Microbiome and Risk for Colorectal Cancer[J]. JNCI Journal of the National Cancer Institute, 2013,105(24):1907-1911.
doi: 10.1093/jnci/djt300 pmid: 24316595 |
[28] |
Adler C J, Dobney K, Weyrich L S, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions[J]. Nature Genetics, 2013,45(4):450-455.
doi: 10.1038/ng.2536 |
[29] | Schloss P D, Gevers D, Westcott S L. Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies[J]. PLOS ONE, 2011,6(12):1-14. |
[30] |
Fierer N, Leff J W, Adams B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes[J]. Proceedings of the National Academy of Sciences, 2012,109(52):21390-21395.
doi: 10.1073/pnas.1215210110 |
[31] |
Yuan Yanli, Si Guicai, Wang Jian, et al. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau[J]. FEMS Microbiology Ecology, 2014,87(1):121-132.
doi: 10.1111/1574-6941.12197 pmid: 23991911 |
[32] |
Liu Junjie, Sui Yueyu, Yu Zhenhua, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014,70:113-122.
doi: 10.1016/j.soilbio.2013.12.014 |
[33] |
Jangid K, Williams M A, Franzluebbers A J, et al. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties[J]. Soil Biology & Biochemistry, 2011,43(10):2184-2193.
doi: 10.1016/j.soilbio.2011.06.022 |
[34] |
Araujo J F, De Castro A P, Costa M M C, et al. Characterization of Soil Bacterial Assemblies in Brazilian Savanna-Like Vegetation Reveals Acidobacteria Dominance[J]. Microbial Ecology, 2012,64(3):760-770.
doi: 10.1007/s00248-012-0057-3 pmid: 22570118 |
[35] | Zhang Y G, Cong J, Lu H, et al. An Integrated Study to Analyze Soil Microbial Community Structure and Metabolic Potential in Two Forest Types[J]. PLoS ONE, 2014,9(4):1-10. |
[36] | 赵爱花, 杜晓军, 臧婧, 等. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2016,23(5):649-657. |
[37] | 杨官品, 男兰, 贾海波, 等. 土壤细菌遗传多样性及其与植被类型相关性研究[J]. 遗传学报, 2000,27(3), 278-282. |
[38] | Qin Yanyuan, Li Jinhua, Wang Gang, et al. Effects of sowing legume species on functional diversity of soil microbial communities in abandoned fields[J]. Journal of Lanzhou University:Natural Science, 2009,45(3):55-60. |
[39] |
Zou X M, Ruan H H, Fu Y, et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure[J]. Soil Biology & Biochemistry, 2005,37(10):1923-1928.
doi: 10.1016/j.soilbio.2005.02.028 |
[40] |
周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007,15(3), 306-311.
doi: doi: 10.1360/biodiv.070069 |
[41] | 汪杏芬, 李世仪, 白克智, 等. CO2倍增对植物生长和土壤微生物生物量碳氮的影响[J]. 植物学报:英文版, 1998,40(12):1169-1172. |
[42] | 任建宏, 燕辉, 朱铭强, 等. 秦岭北坡4种植被类型的土壤养分状况和微生物特征比较研究[J]. 水土保持究, 2010,17(4):228-232. |
[43] | Bryant J A, Lamanna C, Morlon H, et al. Microbes on mountainsides:Contrasting elevational patterns of bacterial and plant diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(S1):11505-11511. |
[44] |
Noah F, McCain C M, Meir P, Zimmermann M, Rapp J M, Silman M R, Knight R. Microbes do not follow the elevational diversity patterns ofplants and animals[J]. Ecology, 2011,92(4):797-804.
doi: 10.1890/10-1170.1 pmid: 21661542 |
[45] | Lin Y T, Whitman W B, Coleman D C, et al. Changes of soil bacterial communities in bamboo plantations at different elevations[J]. FEMS Microbiology Ecology, 2015,91(5):1-6. |
[1] | LIU Yingchun, WU Fayun, SUN Zhongqiu, FU Anmin, GAO Jinping, GAO Xianlian, GAO Jianxin, CUI Chenyan, CHAO Zhi. Comprehensive Experiment Substitute for Multi-Payload Data of Terrestrial Ecosystem Carbon Inventory Satellite in Hainan [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 138-148. |
[2] | ZHAO Yichen, ZHANG Xin, ZHANG Junqing. Study on Soil Microbial Characteristics of Primitive Broad-leaved Korean Pine Forest [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(3): 132-138. |
[3] | DENG Shiqing, TAO Huan, LI Cunjun, LIU Rong, HU Haitang. Effects of Different Topographic Correction Methods on the Distribution Extraction of Pinus thunbergii Using Remote Sensing Imagery [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 138-145. |
[4] | YU Weilian, WANG Yingquan, ZHI Changgui. DEM-based Study on County-scale Land Use and Regional Ecological Environment Evaluation [J]. FOREST RESOURCES WANAGEMENT, 2016, 0(4): 114-120. |
[5] | WEI Yu, LI Bin, TONG Shaoyu, LI Xiuzhai. Altitudinal Pattern of Plant Species Diversity on Southern Slope of Zixi Mountains in Chuxiong City [J]. FOREST RESOURCES WANAGEMENT, 2012, 0(2): 96-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||