FOREST RESOURCES WANAGEMENT ›› 2020›› Issue (5): 123-130.doi: 10.13466/j.cnki.lyzygl.2020.05.018
Previous Articles Next Articles
TAN Dehong(), SHU Qingtai(), ZHAO Hongying, WANG Keren, YUAN Zijian
Received:
2020-08-19
Revised:
2020-10-15
Online:
2020-10-28
Published:
2020-11-30
Contact:
SHU Qingtai
E-mail:1328480375@qq.com;shuqt@163.com
CLC Number:
TAN Dehong, SHU Qingtai, ZHAO Hongying, WANG Keren, YUAN Zijian. Optimized BP Neural Network Model Based on Genetic Algorithm to Estimate The Leaf Area Index of Pinus densata[J]. FOREST RESOURCES WANAGEMENT, 2020, (5): 123-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2020.05.018
Tab.1
Sentinel-2A spectral band information
波段 | 波段名称 | 波长范围/nm | 分辨率/m |
---|---|---|---|
B1 | 气溶胶及海岸带波段 | 422~456 | 60 |
B2 | 蓝波段 | 439~533 | 10 |
B3 | 绿波段 | 538~583 | 10 |
B4 | 红波段 | 646~684 | 10 |
B5 | 植被红边 | 695~714 | 20 |
B6 | 植被红边 | 731~749 | 20 |
B7 | 植被红边 | 769~797 | 20 |
B8 | 近红外波段 | 773~907 | 10 |
B8a | 近红外波段 | 847~881 | 20 |
B9 | 水蒸气波段 | 932~958 | 60 |
B10 | 卷积云波段 | 1337~1412 | 60 |
B11 | 短波红外波段 | 1539~1682 | 20 |
B12 | 短波红外波段 | 2078~2320 | 20 |
Tab.3
Vegetation index formula
植被指数 | 公式 | 文献号 |
---|---|---|
归一化差值植被指数(NDVI) | (NIR-RED)/(NIR+RED) | 21 |
归一化光谱指数(NDSI) | (R783-R705/(R783+R705) | 22 |
比值型光谱指数(RSI) | R783/R705 | 22 |
土壤调节植被指数(SAVI) | (1+L)(R865-RED)/(R865+RED+L)(L=0.25) | 23 |
垂直植被指数(PVI) | (0.355NIR-0.149RED)2+(0.3355RED-0.852NIR)2 | 24 |
红边位置植被指数(S2REP) | 705+35×[0.5×(R783+R665)-R705]/(R740-R705) | 25 |
简单比率(MSR) | (NIR/RED-1)/ | 26 |
[1] | Chen Jingming, Black T A. Defining leaf area index for non-flat leaves[J]. Plant,Cell & Environment, 1992,15(4):421-429. |
[2] |
Running S W, Nemani R R, Peterson D L, et al. Mapping regional forest evapotranspiration and photosynjournal by coupling satellite data with ecosystem simulation[J]. Ecology, 1989,70(4):1090-1101.
doi: 10.2307/1941378 |
[3] |
Majasalmi T, Rautiainen M. The potential of Sentinel-2 data for estimating biophysical variables in a boreal forest:a simulation study[J]. Remote Sensing Letters, 2016,7(5):427-436
doi: 10.1080/2150704X.2016.1149251 |
[4] |
Pu Ruiliang, Gong Peng, Biging G S, et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on geoscience and remote sensing, 2003,41(4):916-921.
doi: 10.1109/TGRS.2003.813555 |
[5] |
刘洋, 刘荣高, 陈镜明, 等. 叶面积指数遥感反演研究进展与展望[J]. 地球信息科学学报, 2013,15(5):734-743.
doi: 10.3724/SP.J.1047.2013.00734 |
[6] |
Darvishzadeh R, Atzberger C, Skidmore A K, et al. Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position[J]. International Journal of Remote Sensing, 2009,30(23):6199-6218.
doi: 10.1080/01431160902842342 |
[7] | 浦瑞良, 宫鹏, 约翰R.米勒. 用CASI遥感数据估计横跨美国俄勒冈州针叶林叶面积指数[J]. 南京林业大学学报:自然科学版, 1993(1):41-48. |
[8] |
Ercanli I, Gunlu A, Şenyurt M, et al. Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey[J]. Forest Ecosystems, 2018,5(1):1-12.
doi: 10.1186/s40663-017-0128-5 |
[9] | 朱高龙, 居为民, 范文义, 等. 帽儿山地区森林冠层叶面积指数的地面观测与遥感反演[J]. 应用生态学报, 2010,21(8):2117-2124. |
[10] | Hardin P J, Jensen R R. Neural Network Estimation of Urban Leaf Area Index[J]. Giscience & Remote Sensing, 2005,42(3):251-274. |
[11] | 王强, 舒清态, 罗洪斌, 等. 基于机载LiDAR和光学遥感数据的热带橡胶林叶面积指数反演[J]. 西北林学院学报, 2020,35(4):132-139. |
[12] |
Yuan Huanhuan, Yang Guijun, Li Changchun, et al. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing:Analysis of RF,ANN,and SVM regression models[J]. Remote Sensing, 2017,9(4):309.
doi: 10.3390/rs9040309 |
[13] | 向洪波. 基于BP神经网络森林叶面积指数估算研究[D]. 重庆:西南大学, 2009. |
[14] | Wang Lei, Wang Pengxin, Liang Shunlin, et al. Monitoring maize growth conditions by training a BP neural network with remotely sensed vegetation temperature condition index and leaf area index[J]. Computers and Electronics in Agriculture, 2019: 82-90. |
[15] | 杨敏, 林杰, 顾哲衍, 等. 基于Landsat8 OLI多光谱影像数据和BP神经网络的叶面积指数反演[J]. 中国水土保持科学, 2015,13(4):86-93. |
[16] |
Zhang Liangpei, Wu Ke, Zhong Yanfei, et al. A new sub-pixel mapping algorithm based on a BP neural network with an observation model[J]. Neurocomputing, 2008,71(10):2046-2054.
doi: 10.1016/j.neucom.2007.08.033 |
[17] | 李雪玲, 董莹莹, 朱溢佞, 等. 基于EnMAP卫星和深度神经网络的LAI遥感反演方法[J]. 红外与毫米波学报, 2020,39(1):111-119. |
[18] | 马海志. BP神经网络的改进研究及应用[D]. 哈尔滨:东北农业大学, 2015. |
[19] | 杨帆, 周敏, 金继民, 等. 智能优化算法及人工神经网络在催化裂化模型分析中的应用进展[J]. 石油学报(石油加工), 2020,36(4):878-888. |
[20] | 王枭轩, 孟庆岩, 张海香, 等. 基于粒子群神经网络模型反演玉米、小麦叶面积指数[J]. 浙江农业学报, 2019,31(7):1170-1176. |
[21] | Park J, La S. Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images[J]. Journal of the Korea Society of Environmental Restoration Technology, 2006,9(6):1-12. |
[22] | Li Fei, Mistele B, Hu Yuncai, et al. Comparing hyperspectral index optimization algorithms to estimate aerial N uptake using multi-temporal winter wheat datasets from contrasting climatic and geographic zones in China and Germany[J]. Agricultural and Forest Meteorology, 2013: 44-57. |
[23] |
Major D J, Baret F, Guyot G, et al. A ratio vegetation index adjusted for soil brightness[J]. International Journal of Remote Sensing, 1990,11(5):727-740.
doi: 10.1080/01431169008955053 |
[24] | Richardsons A J, Wiegand A L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing, 1977,43(12):1541-1552. |
[25] | Frampton W J, Dash J, Watmough G R, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2013: 83-92. |
[26] |
Chen Jingming. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996,22(3):229-242.
doi: 10.1080/07038992.1996.10855178 |
[27] | 任谢楠. 基于遗传算法的BP神经网络的优化研究及MATLAB仿真[D]. 天津:天津师范大学, 2014. |
[28] | 都月, 孟晓辰, 祝连庆. 遗传算法和神经网络的重叠光谱解析[J]. 光谱学与光谱分析, 2020,40(7):2066-2072. |
[1] | CHEN Xiaohua, CHEN Zongzhu, LEI Jinrui, WU Tingtian, LI Yuanling. Estimation of Important Canopy Parameters of Agarwood Based on Hyperspectral Remote Sensing [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 141-147. |
[2] | JIANG Liwei, ZHANG Jiaqi, ZHAO Yichen, ZHAO Yonglei. Dynamic Change of Leaf Area Index in the Growing Season of Typical Forests in Beijing Mountainous Area [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 132-136. |
[3] | WANG Xiaolan, CHEN Jiarui, XING Zhen, ZHANG Chuanlong. Study on Relationship between DBH and Crown Diameter of Pinus densata and Its Application in Southeastern Tibet [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(1): 63-69. |
[4] | HAN Shuang, ZHEN Yan, TAN Qingmei, LIU Yuqing, ZHANG Huabing. Remote Sensing Inversion of Aboveground Biomass in Yancheng Coastal Wetlands [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(4): 105-111. |
[5] | ZHAO Pengwu, ZHAI Mingze, LIU Ziyi, WEI Xiaoxia. Study on Dynamic Features of Leaf Area Index of Secondary Forest in Southern Daxinganling Region [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(6): 103-107. |
[6] | WANG Zongmei, XU Tianshu, YUE Cairong, LIU Qi. Application of Dummy Variable in the Research of Pinus Densata Stock Volume Inversion Model [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(4): 75-81. |
[7] | NIU Zhanyong, FENG Juan, GU Jiancai, LU Guiqiao. Forest Canopy Density RS Inversion Research Based on LAI [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(1): 46-51. |
[8] | MENG Wei, CHEN Caihong, CHEN Wangxiong, LU Yu, WU Jiang. Early Warning of Forest Ecosystem Health Based on BP Neural Network in East Dongting Lake Area [J]. FOREST RESOURCES WANAGEMENT, 2013, 0(3): 74-77. |
[9] | ZHANG Yanlin, FENG Zhongke, YANG Bogang, MA Youping, YAO Shan. Applications of LIDAR Technology in Forestry Investigation [J]. FOREST RESOURCES WANAGEMENT, 2007, 0(6): 73-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||