FOREST RESOURCES WANAGEMENT ›› 2021›› Issue (1): 77-85.doi: 10.13466/j.cnki.lyzygl.2021.01.011
• Scientific Research • Previous Articles Next Articles
JIN Jing1(), YUE Cairong1(
), LI Chungan2, GU Lei1, LUO Hongbin1, ZHU Bodong1
Received:
2020-11-13
Revised:
2020-12-30
Online:
2021-02-28
Published:
2021-03-30
Contact:
YUE Cairong
E-mail:1978541807@qq.com;cryue@163.com
CLC Number:
JIN Jing, YUE Cairong, LI Chungan, GU Lei, LUO Hongbin, ZHU Bodong. Estimation on Forest Volume Based on ALS Data and Dummy Variable Technology[J]. FOREST RESOURCES WANAGEMENT, 2021, (1): 77-85.
Tab.2
Feature variable indexes extracted from ALS data
点云变量符号 | 变量描述 |
---|---|
Hmin/Hmax/Hmean/Hmad/Hccr | 点云最低高度/最高高度/平均高度/平均绝对偏差/冠层突出比 |
Hvar/Hstdv/Hskew/Hkurt/Hcv | 点云高度方差/标准差/偏态/峭度/变动系数 |
点云高度百分位数,样地内所有归一化的激光雷达点云按高度进行排序,然后计算每一统计单元内X%的点所在的高度 | |
H IQ | 高度百分位数四分位数间距:HIQ=H75-H25 |
D[0-9] | 密度变量(10个):将点云数据从低到高分成10个相同高度的切片,每层回波数的比例就是相应的密度变量 |
CC | 郁闭度 |
Tab.4
Model accuracy evaluation index
模型 | 建模精度 | 检验精度 | 差值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | rRMSE/% | R2 | RMSE | rRMSE/% | R2 | RMSE | rRMSE/% | ||||
RFR基础模型 | 0.82 | 31 | 19.32 | 0.59 | 44.65 | 31.89 | 0.23 | 13.65 | 12.57 | |||
RFR哑变量模型(树种组) | 0.85 | 28.72 | 17.91 | 0.64 | 41.66 | 29.75 | 0.21 | 12.94 | 11.84 | |||
RFR哑变量模型(龄组) | 0.90 | 22.69 | 14.14 | 0.65 | 41.27 | 29.47 | 0.25 | 18.58 | 15.33 | |||
SVR基础模型 | 0.57 | 47.17 | 30.36 | 0.45 | 55.15 | 36.3 | 0.12 | 7.98 | 5.94 | |||
SVR哑变量模型(树种组) | 0.61 | 45.26 | 29.13 | 0.50 | 52.38 | 34.5 | 0.11 | 7.12 | 5.37 | |||
SVR哑变量模型(龄组) | 0.62 | 44.45 | 28.61 | 0.55 | 49.84 | 32.84 | 0.07 | 5.39 | 4.23 |
[1] | 汪康宁, 马婷, 吕杰. 基于随机森林算法的凉水自然保护区蓄积量反演研究[J]. 西南林业大学学报, 2016,36(5):125-129. |
[2] |
Xie Haiyi, Cao Chunxiang, Xu Shicai, et al. Regional forest volume estimation by expanding LiDAR samples using multi-sensor satellite data[J]. Remote Sensing, 2020,12(3):360-378.
doi: 10.3390/rs12030360 |
[3] |
李文娟, 赵传燕, 别强, 等. 基于机载激光雷达数据的森林结构参数反演[J]. 遥感技术与应用, 2015,30(5):917-924.
doi: 10.11873/j.issn.1004-0323.2015.5.0917 |
[4] |
许子乾, 曹林, 阮宏华, 等. 集成高分辨率UAV影像与激光雷达点云的亚热带森林林分特征反演[J]. 植物生态学报, 2015(7):694-703.
doi: 10.17521/cjpe.2015.0066 |
[5] | Paolo M, Vibrans A C, Mcroberts R E, et al. Methods for variable selection in LiDAR-assisted forest inventories[J]. Forestry, 2017,7(1):112-124. |
[6] |
Strimbu V F, Ene L T, Gobakken T, et al. Post-stratified change estimation for large-area forest biomass using repeated ALS strip sampling[J]. Canadian Journal of Forest Research, 2017,47(6):839-847.
doi: 10.1139/cjfr-2017-0031 |
[7] | Lu Dengsheng, Chen Qi, Wang Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014: 63-105. |
[8] |
Ayrey E, Hayes D J, Fraver S, et al. Ecologically-based metrics for assessing structure in developing area-based,enhanced forest inventories from LiDAR[J]. Canadian Journal of Remote Sensing, 2019,45(1):88-112.
doi: 10.1080/07038992.2019.1612738 |
[9] |
White Joanne C, Coops, et al. Remote sensing technologies for enhancing forest inventories:a review[J]. Canadian Journal of Remote Sensing, 2016,42(5):619-641.
doi: 10.1080/07038992.2016.1207484 |
[10] | David Coomes, Michele Dalponte, Tommaso Jucker, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data[J]. RemoteSensing of Environment, 2017,194:77-88. |
[11] |
Leite R V, Amaral C H, Pires, et al. Estimatingstem volume in eucalyptus plantations using airborne LiDAR:acomparison of area- and individual tree-based approaches[J]. Remote Sensing. 2020,12:1513.
doi: 10.3390/rs12091513 |
[12] | 王忠诚, 朱光玉, 文仕知, 等. 利用哑变量研究湘西桤木林分优势平均高与平均高的相关关系[J]. 中国农学通报, 2011,27(25):37-44. |
[13] | 曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程[J]. 林业科学研究, 2011,24(3):285-291. |
[14] | 王金池, 邓华锋, 冉啟香, 等. 基于哑变量的云南松蓄积生长模型[J]. 森林与环境学报, 2017,37(4):453-458. |
[15] | 岳振兴, 岳彩荣, 邹会敏. 哑变量在森林积量模型估测中的应用[J]. 中南林业科技大学学报, 2020,40(7):65-72. |
[16] | 朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报:自然科学版, 2018,42(2):155-162. |
[17] |
Li Chao, Li Mingyang, Li Yingchang, et al. Estimating aboveground forest carbon density using Landsat 8 and field-based data:a comparison of modeling approaches[J]. International Journal of Remote Sensing, 2020,41(11):4269-4292.
doi: 10.1080/01431161.2020.1714782 |
[18] | 赖旭东. 机载激光雷达基础原理与应用[M]. 北京: 电子工业出版社, 2010: 150. |
[19] |
Breiman L. Randomforests[J]. Machine learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[20] | 李丽霞, 郜艳晖, 张瑛. 哑变量在统计分析中的应用[J]. 数理医药学杂志, 2006(1):51-53. |
[21] | 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020,33(4):59-66. |
[22] | 尚珂. 基于支持向量机回归的草地地上生物量遥感估测研究[D]. 昆明:西南林业大学, 2015. |
[23] | 王珊, 燕飞. SVR的树木生长过程建模及其参数优化研究[J]. 湖南农业科学, 2010(3):103-106. |
[1] | WU Sha, BIAN Gengzhan, YI Xuan, LYU Yong. Research and Construction of Stand Form Height Model of Quercus glauca Secondary Forest [J]. Forest and Grassland Resources Research, 2024, 0(1): 134-142. |
[2] | TANG Jiajun, WANG Gang, CHAI Zongzheng. Single-TreeVolume Estimation of Pinus massoniana based on Airborne LiDAR Point Cloud [J]. Forest and Grassland Resources Research, 2023, 0(6): 105-112. |
[3] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[4] | CHEN Jingjing, CHAI Zongzheng. Determination and Application of Reasonable Annual Forest Harvesting Volume Based on Simulation Calculation Method [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 146-152. |
[5] | ZENG Weisheng, YANG Xueyun. Analysis of General Status and Examination of Estimation Errors for One-Variable Tree Volume Tables in China [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 43-49. |
[6] | LV Chaoyan, GAO Zhixi, XU Xingxian, WU Huan, CHEN Xingyan. Responses of Photosynthetic Characteristics and Water Potential of Alsophila spinulosa to Drought Stress and Rehydration [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 51-61. |
[7] | HUANG Xiaofa, ZHANG Wei, CEN Juyan, WU Guoxin, HUANG Shuying. Study on the Optimization and Selection of Cunninghamia lanceolata Standing Volume Model in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 61-67. |
[8] | LYU Chaoyan, GAO Zhixi, XU Xingxian, ZHANG Yao, CHEN Xu, SHI Jiaojiao. Effects of Drought Stress and Rehydration on the Physiological Characteristics of Alsophila spinulosa [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 160-168. |
[9] | ZENG Weisheng, YANG Xueyun, SUN Xiangnan, LIU Qiangyi, ZHANG Yuchao. A Study on Integration of Forest Stock Data at Different Levels in Forest Inventory and Monitoring [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 13-19. |
[10] | LONG Zhihao, LUO Peng, XU Dengping, LI Zhen, DAI Huabin. Inversion Research of Forest Stock Volume Using the Red Edge Bands of Sentinel-2A [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 126-134. |
[11] | TAO Jixing, XIE Binglou, JI Biyong, ZHANG Guojiang, WANG Wenwu. Spatio-Temporal Error Correction for Accurate Monitoring of Annual Growth Rate of Forest Volume in Zhejiang Province [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 32-38. |
[12] | ZENG Weisheng. Development of Multivariate Mixed Models for Forest Volume and Biomass [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 23-28. |
[13] | DONG Xiaoming, LUO Yusheng, ZHENG Tiancai, XIE Qijun, CHEN Xiaowei, LI Qiulin, YAN Dongfeng. Study on Standing Volume Model of Pinus taiwanensisin in Henan [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 29-36. |
[14] | DU Zhi, CHEN Zhenxiong, MA Kaisen, LIU Ziwei, GU Xinggui. Estimating Standing Volume in Southern Collective Forest Region Based on the Unmanned Aerial Vehicle LiDAR Characteristic Variables [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 157-165. |
[15] | GAO Jinping, SUN Zhongqiu, YU Huina, GAO Xianlian, WU Fayun, LIU Yingchun. Modeling and Application Test of Larch Stand Volume Based on Aerial Lidar Point Cloud [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 54-61. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 509
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||