FOREST RESOURCES WANAGEMENT ›› 2021›› Issue (2): 61-67.doi: 10.13466/j.cnki.lyzygl.2021.02.009
Previous Articles Next Articles
WU Fayun1(), GAO Xianlian1(), ZHOU Rong2, WANG Pengjie3, FU Anmin1
Received:
2020-12-14
Revised:
2021-02-03
Online:
2021-04-28
Published:
2021-06-03
Contact:
GAO Xianlian
E-mail:wufayun@sina.com;gaoxianlian@qq.com
CLC Number:
WU Fayun, GAO Xianlian, ZHOU Rong, WANG Pengjie, FU Anmin. Research on Forest Biomass and Stock Volume Model Based on Stand Height and Canopy Density[J]. FOREST RESOURCES WANAGEMENT, 2021, (2): 61-67.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2021.02.009
Tab.1
Statistical table of plot data
郁闭度 | 样地数 | 变 量 | 平均值 | 最小值 | 最大值 | 标准差 |
---|---|---|---|---|---|---|
0.2 | 2 | 优势木平均高D/m | 11.35 | 5.20 | 17.50 | 8.70 |
优势木平均高H/m | 11.75 | 6.00 | 17.50 | 8.13 | ||
蓄积量/m3 | 1.55 | 0.40 | 2.70 | 1.63 | ||
地上生物量/kg | 1047.63 | 367.14 | 1728.13 | 962.36 | ||
0.3 | 16 | 优势木平均高D/m | 16.82 | 6.80 | 31.30 | 8.11 |
优势木平均高H/m | 17.71 | 6.80 | 32.20 | 8.54 | ||
蓄积量/m3 | 4.91 | 0.40 | 17.10 | 5.13 | ||
地上生物量/kg | 3655.05 | 426.54 | 10442.31 | 2930.78 | ||
0.4 | 3 | 优势木平均高D/m | 8.20 | 6.80 | 9.20 | 1.02 |
优势木平均高H/m | 8.83 | 7.30 | 9.90 | 1.11 | ||
蓄积量/m3 | 12.37 | 9.70 | 17.10 | 3.36 | ||
地上生物量/kg | 1001.5059 | 705.6651 | 1262.4485 | 228.64 | ||
0.5 | 6 | 优势木平均高D/m | 15.22 | 7.30 | 24.90 | 5.40 |
优势木平均高H/m | 16.18 | 8.60 | 25.20 | 5.23 | ||
蓄积量/m3 | 11.38 | 2.10 | 22.20 | 7.75 | ||
地上生物量/kg | 5339.15 | 771.29 | 10771.98 | 3254.68 | ||
0.6 | 8 | 优势木平均高D/m | 20.80 | 16.10 | 25.20 | 2.90 |
优势木平均高H/m | 23.20 | 21.10 | 27.10 | 1.98 | ||
蓄积量/m3 | 7.08 | 2.10 | 12.30 | 3.77 | ||
地上生物量/kg | 8430.84 | 3015.95 | 12193.98 | 2930.74 | ||
0.7 | 14 | 优势木平均高D/m | 15.44 | 7.90 | 27.80 | 6.29 |
优势木平均高H/m | 16.31 | 8.10 | 27.90 | 6.14 | ||
蓄积量/m3 | 8.58 | 0.80 | 17.20 | 4.99 | ||
地上生物量/kg | 4193.21 | 1561.99 | 7759.64 | 2154.89 | ||
0.8 | 3 | 优势木平均高D/m | 16.77 | 14.90 | 20.10 | 2.36 |
优势木平均高H/m | 17.87 | 15.90 | 20.50 | 1.94 | ||
蓄积量/m3 | 12.00 | 10.70 | 13.00 | 0.96 | ||
地上生物量/kg | 7147.82 | 7047.85 | 7325.79 | 126.16 |
Tab.2
The table of variables combination
优势木算术平均高 HH变量因子组合 | 优势木断面积加权平均高 HD变量因子组合 |
---|---|
C×HH2 | C×HD2 |
ln(C×HH2) | ln(C×HD2) |
log(C×HH2) | log(C×HD2) |
C2×HH2 | C2×HD2 |
ln(C2×HH2) | ln(C2×HD2) |
log(C2×HH2) | log(C2×HD2) |
C×HH2×N | C×HD2×N |
ln(C×HH2×N) | ln(C×HD2×N) |
log(C×HH2×N) | log(C×HD2×N) |
C2×HH2×N | C2×HD2×N |
ln(C2×HH2×N) | ln(C2×HD2×N) |
log(C2×HH2×N) | log(C2×HD2×N) |
Tab.4
Statistics of regression results of aboveground biomass model with different variable combinations
函数类型 | HD | R2 | HH | R2 |
---|---|---|---|---|
一次 | C×HD2 | 0.562 | C×HH2 | 0.626 |
ln(C×HD2) | 0.667 | ln(C×HH2) | 0.682 | |
log(C×HD2) | 0.667 | log(C×HH2) | 0.682 | |
C2×HD2 | 0.415 | C2×HH2 | 0.466 | |
ln(C2×HD2) | 0.586 | ln(C2×HH2) | 0.590 | |
log(C2×HD2) | 0.586 | log(C2×HH2) | 0.590 | |
C×HD2×N | 0.428 | C×HH2×N | 0.408 | |
ln(C×HD2×N) | 0.535 | ln(C×HH2×N) | 0.520 | |
log(C×HD2×N) | 0.535 | log(C×HH2×N) | 0.520 | |
C2×HD2×N | 0.306 | C2×HH2×N | 0.301 | |
ln(C2×HD2×N) | 0.442 | ln(C2×HH2×N) | 0.432 | |
log(C2×HD2×N) | 0.442 | log(C2×HH2×N) | 0.432 | |
幂 | C×HD2 | 0.843 | C×HH2 | 0.861 |
ln(C×HD2) | 0.830 | ln(C×HH2) | 0.854 | |
log(C×HD2) | 0.830 | log(C×HH2) | 0.854 | |
C2×HD2 | 0.764 | C2×HH2 | 0.768 | |
ln(C2×HD2) | 0.536 | ln(C2×HH2) | 0.679 | |
log(C2×HD2) | 0.536 | log(C2×HH2) | 0.679 | |
C×HD2×N | 0.693 | C×HH2×N | 0.673 | |
ln(C×HD2×N) | 0.704 | ln(C×HH2×N) | 0.687 | |
log(C×HD2×N) | 0.704 | log(C×HH2×N) | 0.687 | |
C2×HD2×N | 0.587 | C2×HH2×N | 0.574 | |
ln(C2×HD2×N) | 0.601 | ln(C2×HH2×N) | 0.591 | |
log(C2×HD2×N) | 0.601 | log(C2×HH2×N) | 0.591 | |
对数 | C×HD2 | 0.667 | C×HH2 | 0.682 |
ln(C×HD2) | 0.601 | ln(C×HH2) | 0.624 | |
log(C×HD2) | 0.601 | log(C×HH2) | 0.624 | |
C2×HD2 | 0.586 | C2×HH2 | 0.590 | |
ln(C2×HD2) | 0.314 | ln(C2×HH2) | 0.435 | |
log(C2×HD2) | 0.314 | log(C2×HH2) | 0.435 | |
C×HD2×N | 0.535 | C×HH2×N | 0.520 | |
ln(C×HD2×N) | 0.516 | ln(C×HH2×N) | 0.506 | |
log(C×HD2×N) | 0.516 | log(C×HH2×N) | 0.506 | |
C2×HD2×N | 0.442 | C2×HH2×N | 0.432 | |
ln(C2×HD2×N) | 0.423 | ln(C2×HH2×N) | 0.417 | |
log(C2×HD2×N) | 0.423 | log(C2×HH2×N) | 0.417 | |
指数 | C×HD2 | 0.581 | C×HH2 | 0.647 |
ln(C×HD2) | 0.843 | ln(C×HH2) | 0.908 | |
log(C×HD2) | 0.843 | log(C×HH2) | 0.908 | |
C2×HD2 | 0.441 | C2×HH2 | 0.493 | |
ln(C2×HD2) | 0.764 | ln(C2×HH2) | 0.768 | |
log(C2×HD2) | 0.764 | log(C2×HH2) | 0.768 | |
C×HD2×N | 0.422 | C×HH2×N | 0.404 | |
ln(C×HD2×N) | 0.693 | ln(C×HH2×N) | 0.673 | |
log(C×HD2×N) | 0.693 | log(C×HH2×N) | 0.673 | |
C2×HD2×N | 0.316 | C2×HH2×N | 0.310 | |
ln(C2×HD2×N) | 0.587 | ln(C2×HH2×N) | 0.574 | |
log(C2×HD2×N) | 0.587 | log(C2×HH2×N) | 0.574 |
Tab.5
Statistics of regression results of accumulation model of different variable combinations
函数类型 | HD | R2 | HH | R2 |
---|---|---|---|---|
一次 | C×HD2 | 0.645 | C×HH2 | 0.700 |
ln(C×HD2) | 0.697 | ln(C×HH2) | 0.705 | |
log(C×HD2) | 0.697 | log(C×HH2) | 0.705 | |
C2×HD2 | 0.478 | C2×HH2 | 0.523 | |
ln(C2×HD2) | 0.601 | ln(C2×HH2) | 0.600 | |
log(C2×HD2) | 0.601 | log(C2×HH2) | 0.600 | |
C×HD2×N | 0.414 | C×HH2×N | 0.388 | |
ln(C×HD2×N) | 0.503 | ln(C×HH2×N) | 0.484 | |
log(C×HD2×N) | 0.503 | log(C×HH2×N) | 0.484 | |
C2×HD2×N | 0.299 | C2×HH2×N | 0.288 | |
ln(C2×HD2×N) | 0.413 | ln(C2×HH2×N) | 0.401 | |
log(C2×HD2×N) | 0.413 | log(C2×HH2×N) | 0.401 | |
幂 | C×HD2 | 0.878 | C×HH2 | 0.893 |
ln(C×HD2) | 0.859 | ln(C×HH2) | 0.880 | |
log(C×HD2) | 0.859 | log(C×HH2) | 0.880 | |
C2×HD2 | 0.782 | C2×HH2 | 0.783 | |
ln(C2×HD2) | 0.544 | ln(C2×HH2) | 0.687 | |
log(C2×HD2) | 0.544 | log(C2×HH2) | 0.687 | |
C×HD2×N | 0.679 | C×HH2×N | 0.657 | |
ln(C×HD2×N) | 0.690 | ln(C×HH2×N) | 0.671 | |
log(C×HD2×N) | 0.690 | log(C×HH2×N) | 0.671 | |
C2×HD2×N | 0.571 | C2×HH2×N | 0.556 | |
ln(C2×HD2×N) | 0.585 | ln(C2×HH2×N) | 0.572 | |
log(C2×HD2×N) | 0.585 | log(C2×HH2×N) | 0.572 | |
对数 | C×HD2 | 0.697 | C×HH2 | 0.705 |
ln(C×HD2) | 0.616 | ln(C×HH2) | 0.635 | |
log(C×HD2) | 0.616 | log(C×HH2) | 0.635 | |
C2×HD2 | 0.601 | C2×HH2 | 0.600 | |
ln(C2×HD2) | 0.308 | ln(C2×HH2) | 0.430 | |
log(C2×HD2) | 0.308 | log(C2×HH2) | 0.430 | |
C×HD2×N | 0.503 | C×HH2×N | 0.484 | |
ln(C×HD2×N) | 0.485 | ln(C×HH2×N) | 0.470 | |
log(C×HD2×N) | 0.485 | log(C×HH2×N) | 0.470 | |
C2×HD2×N | 0.413 | C2×HH2×N | 0.401 | |
ln(C2×HD2×N) | 0.394 | ln(C2×HH2×N) | 0.386 | |
log(C2×HD2×N) | 0.394 | log(C2×HH2×N) | 0.386 | |
指数 | C×HD2 | 0.627 | C×HH2 | 0.690 |
ln(C×HD2) | 0.878 | ln(C×HH2) | 0.906 | |
log(C×HD2) | 0.878 | log(C×HH2) | 0.906 | |
C2×HD2 | 0.474 | C2×HH2 | 0.523 | |
ln(C2×HD2) | 0.782 | ln(C2×HH2) | 0.783 | |
log(C2×HD2) | 0.782 | log(C2×HH2) | 0.783 | |
C×HD2×N | 0.415 | C×HH2×N | 0.395 | |
ln(C×HD2×N) | 0.679 | ln(C×HH2×N) | 0.657 | |
log(C×HD2×N) | 0.679 | log(C×HH2×N) | 0.657 | |
C2×HD2×N | 0.311 | C2×HH2×N | 0.304 | |
ln(C2×HD2×N) | 0.571 | ln(C2×HH2×N) | 0.556 | |
log(C2×HD2×N) | 0.571 | log(C2×HH2×N) | 0.556 |
[1] | 何祺胜, 陈尔学, 曹春香, 等. 基于LIDAR数据的森林参数反演方法研究[J]. 地球科学进展, 2009,24(7):748-755. |
[2] | 方精云, 陈安平, 赵淑清, 等. 中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320~2322)的若干说明[J]. 植物生态学报, 2002(2):243-249. |
[3] | Post W M, Emanuel W R, Zinke P J. Soil carbon pools and world life zones[J]. Nature, 1982(298):156-159. |
[4] | 张志, 田昕, 陈尔学, 等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011,33(5):144-150. |
[5] | 张凝, 冯仲科, 冯跃文, 等. 旺业甸实验林场针叶林蓄积量估测模型的研究[J]. 中南林业科技大学学报, 2013,33(11):83-87. |
[6] | 赵匡记, 王利东, 王立军, 等. 华北落叶松蓄积量及生产力研究[J]. 北京林业大学学报, 2015,37(2):24-31. |
[7] | 赵峰, 李增元, 王韵晟, 等. 机载激光雷达(LiDAR)数据在森林资源调查中的应用综述[J]. 遥感信息, 2008(1):106-110. |
[8] | 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005(3):129-136. |
[9] |
Hu Yang, Wu Fayun, Sun Zhongqiu, et al. The Laser Vegetation Detecting Sensor:A Full Waveform,Large-Footprint,Airborne Laser Altimeter for Monitoring Forest Resources[J]. Sensors, 2019,19(7):1699;doi: 10.3390/S19071699.
doi: 10.3390/s19071699 |
[10] | 吴发云, 高显连, 潘超, 等. 机载林业探测大光斑激光雷达系统的设计与应用[J]. 林业资源管理, 2018(4):125-132. |
[11] | 庞勇, 李增元. 基于机载激光雷达的小兴安岭温带森林组分生物量反演[J]. 植物生态学报, 2012,36(10):1095-1105. |
[12] | 马利群, 李爱农. 激光雷达在森林垂直结构参数估算中的应用[J]. 世界林业研究, 2011,24(1):41-45. |
[13] | 邢艳秋, 尤号田, 霍达, 等. 小光斑激光雷达数据估测森林树高研究进展[J]. 世界林业研究, 2014,27(2):29-34. |
[14] | 穆喜云, 张秋良, 刘清旺, 等. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015,30(2):220-225. |
[15] | 罗洪斌, 舒清态, 庞勇, 等. 运用机载LiDAR数据对橡胶林地上生物量估测的采样尺度效应分析[J]. 林业资源管理, 2020(1):136-142. |
[16] |
Persson H J, Perko R. Assessment of boreal forest height from WorldView-2 satellite stereo images[J]. Remote Sensing Letters, 2016,7(12):1150-1159.
doi: 10.1080/2150704X.2016.1219424 |
[17] | 倪文俭, 张大凤, 汪垚, 等. 高分二号异轨立体数据的森林高度提取[J]. 遥感学报, 2018,22(3):392-399. |
[18] |
Neigh C, Masek J, Bourget P, et al. Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR[J]. Remote Sensing, 2014,6(3):1762-1782.
doi: 10.3390/rs6031762 |
[19] | 卢振龙, 龚孝生. 灌木生物量测定的研究进展[J]. 林业调查规划, 2009,34(4):37-40. |
[20] | 符利勇, 雷渊才, 孙伟, 等. 不同林分起源的相容性生物量模型构建[J]. 生态学报, 2014,34(6):1461-1470. |
[21] | 王文栋, 白志强, 阿里木·买买提, 等. 天山林区6种优势种灌木林生物量比较及估测模型[J]. 生态学报. 2016,36(9):2695-2704. |
[22] |
罗永开, 方精云, 胡会峰. 山西芦芽山14种常见灌木生物量模型及生物量分配[J]. 植物生态学报, 2017,41(1):115-125.
doi: 10.17521/cjpe.2016.0131 |
[1] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[2] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[3] | ZHU Yali, ZHANG Jinglu, ZHANG Huifang, DILIXIATI· Baoerhan, LIAN Jiajia. Biomass Analysis and Model Development of Caragana sinica in Central Tianshan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 129-135. |
[4] | LONG Zhihao, LUO Peng, XU Dengping, LI Zhen, DAI Huabin. Inversion Research of Forest Stock Volume Using the Red Edge Bands of Sentinel-2A [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 126-134. |
[5] | ZHOU Chenqin, YU Yongjun, FANG Luming, LIU Yuzhen, HU Jianjin. Effects of Flight Height and Canopy Density on Canopy Extraction of Metasequoia glyptostroboides [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 150-156. |
[6] | TANG Jinhao, ZHANG Jialong, CHEN Liye, CHENG Tao. Research on Estimation of Aboveground Biomass and Scale Conversion for Pinus densata Mast [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 83-89. |
[7] | DU Zhi, CHEN Zhenxiong, MA Kaisen, LIU Ziwei, GU Xinggui. Estimating Standing Volume in Southern Collective Forest Region Based on the Unmanned Aerial Vehicle LiDAR Characteristic Variables [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 157-165. |
[8] | XIAO Yue, XU Xiaodong, LONG Jiangping, LIN Hui. Research on Inversion of Forest Volume Based on Domestic High-Resolution Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 101-107. |
[9] | WU Simin, SUN Hua, LIN Hui. Research on LiDAR Stand Average High Inversion Method Based on Auto-adaptive Threshold and Peak Value [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 61-68. |
[10] | SUN Zhongqiu, WU Fayun, HU Yang, GAO Xianlian, Gao Jingping. Determination and Estimation of Pinus massoniana Stand Volume and Saturation Point Based on Landsat-8 OLI Data [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 135-142. |
[11] | PU Yihan, XU Dandan, WANG Haobin. An Approach on Estimating Canopy Closure via Digital Images [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 153-160. |
[12] | LIN Lili, HAO Zhenbang, YANG Liuqing, GAO Yangchi, LIU Yanfen, YU Kunyong, LIU Jian. The Development and Application of Automatic Measurement System for Forest Canopy Closure [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 167-172. |
[13] | GONG Yinting. The Litter Storage Capacity and Water-holding Characteristics of 5 Typical Forests in Baihua Mountain [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(3): 113-117. |
[14] | ZHU Yali, ZHANG Huifang, ZHANG Jinglu, DI lixiati·Baoerhan. Establishment of the Model for Estimating Aboveground Biomass of Populus euphratica Based on UAV Remote Sensing [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 80-87. |
[15] | WANG Zixuan, ZHOU Mei, ZHAO Pengwu, WANG Ding, YANG Lei, DING Zhaohua. Study on Species Diversity and Aboveground Biomass of Burned Phytocoenosium under Different Burntwood Management Modes —Taking Frigid-temperate Zone Larix gmelini as an Example [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(4): 28-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||