[1] |
兰莹. 吉林省蒙古栎树高级材积表编制初探[J]. 吉林林业科技, 2018, 47(4):7-10.
|
[2] |
艾畅, 高金萍, 徐干君, 等. 新时代森林资源监测面临的形势任务和创新对策[J]. 国家林业和草原局管理干部学院学报, 2020(2):3-9.
|
[3] |
Hall R J, Skakun R S, Arsenault E J, et al. Modeling forest stand structure attributes using Landsat ETM+data:Application to mapping of aboveground biomass and stand volume[J]. Forest Ecology and Management. 2006, 225(1-3):378-390.
doi: 10.1016/j.foreco.2006.01.014
|
[4] |
王月婷, 张晓丽, 杨慧乔, 等. 基于Landsat 8卫星光谱与纹理信息的森林蓄积量估算[J]. 浙江农林大学学报. 2015, 32(3):384-391.
|
[5] |
Duncanson L I, Niemann K O, Wulder M A. Integration of GLAS and Landsat TM data for aboveground biomass estimation[J]. Canadian Journal of Remote Sensing. 2010, 36(2):129-141.
doi: 10.5589/m10-037
|
[6] |
Hilker T, van Leeuwen M, Coops N C, et al. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand[J]. Trees, 2010, 24(5):819-832.
doi: 10.1007/s00468-010-0452-7
|
[7] |
MacLean G A, Krabill W B. Gross merchantable timber volume estimation using an airborne LiDAR system[J]. Canadian Journal of Remote Sensing. 1986, 12(1):7-18.
doi: 10.1080/07038992.1986.10855092
|
[8] |
Keiko, Ioki, Junichi, et al. Estimating stand volume in broad-leaved forest using discrete-return LiDAR:plot-based approach[J]. Landscape and Ecological Engineering, 2010, 6(1):29-36.
doi: 10.1007/s11355-009-0077-4
|
[9] |
Giannico V, Lafortezza R, John R, et al. Estimating stand volume and above-ground biomass of urban forests using LiDAR[J]. Remote Sensing, 2016, 8(4):339.
doi: 10.3390/rs8040339
|
[10] |
曹林, 代劲松, 徐建新, 等. 基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取[J]. 北京林业大学学报, 2014, 36(5):13-21.
|
[11] |
刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5):872-888.
|
[12] |
曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据估计林分蓄积量及平均高和断面积[J]. 林业资源管理, 2020(2):79-86.
|
[13] |
国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019.
|
[14] |
GB/T 26424—2010,森林资源规划设计调查技术规程[S].
|