FOREST RESOURCES WANAGEMENT ›› 2021›› Issue (4): 94-103.doi: 10.13466/j.cnki.lyzygl.2021.04.013
• Scientific Research • Previous Articles Next Articles
MA Bolun(), WANG Lei(), HUA Yongchun
Received:
2021-06-29
Revised:
2021-07-07
Online:
2021-08-28
Published:
2021-09-26
Contact:
WANG Lei
E-mail:864835709@qq.com;1602173685@qq.com
CLC Number:
MA Bolun, WANG Lei, HUA Yongchun. Correlation Analysis of Fine Particulate Pollutants and Land Cover Landscape Pattern in Beijing[J]. FOREST RESOURCES WANAGEMENT, 2021, (4): 94-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2021.04.013
Tab.1
Landscape index and description
景观指数 | 公式 | 描述 |
---|---|---|
PLAND | PLAND= | PLAND为某一斑块类型的总面积占整个景观面积的百分比;aij为斑块ij的面积;A是所有景观的总面积,其值越小则景观斑块类型越少 |
PD | PD= | PD为斑块破碎度,其值越大,则破碎化程度越高;Nij为斑块数目,A为斑块面积之和 |
LPI | LPI= | LPI为最大斑块占景观面积的比例,其值的变化可以改变干扰的强度和频率,反映人类活动的方向和强弱;Max(a1×an)为景观中最大斑块面积;A为景观总面积 |
ED | ED= | ED为边界密度;Eik为优势斑块的边缘总长度;A为景观总面积,其反映斑块中相互影响的强度与能量物质交换的潜力 |
LSI | LSI= | LSI为景观形状指数,可衡量整体几何景观的复杂性,其值越大,斑块形状越接近正方形;E为景观边缘的总长度;A为景观总面积 |
IJI | IJI= | IJI为斑块类型i在其他斑块类型中的平均平均分散占最大可能分散的比例,取值范围为0~100,值越小聚集性越强,eik为斑块类型i与k相邻的总边缘长度 |
COHESION | COHESION=(1- | COHESION为斑块连接度;反映相应斑块之间的物理连通性P为斑块在该类型中的周长;a为斑块i在该类型中的面积;A为斑块总面积 |
AI | AI=MAX×Gii×100 | AI反映景观中不同斑块类型的非随机性或聚集程度;Gii为景观类型的相似邻接斑块数量 |
Tab.4
Pearson correlation coefficient between landscape index and fine particle concentration in year four seasons
季节 | 景观类型比 (PLAND) | 景观破碎度 (PD) | 最大斑块指数 (LPI) | 边界密度 (ED) | 形状指数 (LSI) | 散布并列指数 (IJI) | 斑块连接度 (COHESION) | 聚集程度 (AI) |
---|---|---|---|---|---|---|---|---|
春季 | 0.000 | 0.063 | -0.070 | -0.271* | -0.052 | -0.084 | -0.047 | -0.056 |
夏季 | 0.000 | -0.163 | -0.222* | -0.176 | 0.438** | 0.137 | -0.343** | -0.500** |
秋季 | 0.000 | 0.301** | -0.171 | -0.347** | 0.453** | 0.074 | -0.173 | -0.381** |
冬季 | 0.000 | 0.400** | -0.138 | -0.295** | 0.329** | 0.006 | -0.261** | -0.422** |
全年 | 0.000 | 0.552** | -0.241** | -0.234* | 0.420** | 0.101 | -0.400** | -0.556** |
Tab.5
Pearson correlation coefficient between land type landscape index and fine particulate matter
类型 | 景观类型比 (PLAND) | 景观破碎度 (PD) | 最大斑块指数 (LPI) | 边界密度 (ED) | 形状指数 (LSI) | 散布并列指数 (IJI) | 斑块连接度 (COHESION) | 聚集程度 (AI) |
---|---|---|---|---|---|---|---|---|
农田 | 0.666** | 0.224* | 0.571** | -0.134 | 0.400** | -0.231* | 0.610** | 0.647** |
森林 | -0.567** | 0.569** | -0.544** | -0.369** | -0.126 | -0.091 | -0.545** | -0.580** |
草地 | -0.054 | 0.220 | -0.002 | -0.340** | -0.359** | 0.117 | -0.285* | -0.142 |
水体 | 0.332* | 0.615** | 0.099 | 0.259 | 0.343** | -0.134 | 0.039 | -0.191 |
Tab.6
Optimal multiple linear stepwise regression model of landscape index - fine particle concentration
类型 | 回归方程 | 调整后R2 | F | Sig | 系数VIF |
---|---|---|---|---|---|
农田 | Y=-0.082+0.337PD-0.246ED+0.253LSI-0.108IJI+0.670AI | 0.549 | 60.682 | 0.00 | <2 |
森林 | Y=0.121+0.580PD-0.778ED+0.475LSI+0.007IJI | 0.534 | 94.809 | 0.00 | <3 |
草地 | Y=0.189+0.517PD-0.683ED+0.163IJI+0.68COHESION+0.008AI | 0.398 | 37.366 | 0.00 | <4 |
水体 | Y=0.187+0.946PD-0.487ED-0.056LSI-0.153IJI+0.486COHESION | 0.423 | 49.063 | 0.00 | <4 |
[1] |
Belskii E A, Belskaya E A. Bird population in birch forests of the Southern Urals affected by industrial pollution:Report 2.Relationship with habitat variables[J]. Contemporary Problems of Ecology, 2013, 6(3):323-329.
doi: 10.1134/S1995425513030037 |
[2] | 范辰乾. 基于MODIS数据的气溶胶光学厚度与PM2.5浓度关系研究[D]. 济南:山东师范大学, 2014. |
[3] |
Liu Xiaohua, Yu Xixi, Zhang Zimei. PM2.5 concentration differences between various forest types and its correlation with forest structure[J]. Atmosphere, 2015, 6(11):1801-1815.
doi: 10.3390/atmos6111801 |
[4] | 王兵, 张维康, 牛香, 等. 北京10个常绿树种颗粒物吸附能力研究[J]. 环境科学, 2015, 36(2):408-414. |
[5] | 张维康, 王兵, 牛香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力[J]. 环境科学, 2015, 36(7):2381-2388. |
[6] | 王赞红, 李纪标. 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态[J]. 生态环境, 2006, 15(2):327-330. |
[7] | 杜春兰. 降减PM2.5的绿色基础设施途径的思索[J]. 风景园林, 2013, 3(2):147-148. |
[8] |
Gourdji S. Review of plants to mitigate particulate matter,ozone as well as nitrogen dioxide air pollutants and applicable recommendations for green roofs in Montreal,Quebec[J]. Environmental Pollution, 2018, 241:378-387.
doi: 10.1016/j.envpol.2018.05.053 |
[9] |
Viecco M, Vera S, Jorquera H, et al. Potential of particle matter dry deposition on green roofs and living walls vegetation for mitigating urban atmospheric pollution in semiarid climates[J]. Sustainability, 2018, 10(7):2431-2438.
doi: 10.3390/su10072431 |
[10] |
Mori J, Fini A, Galimberti M, et al. Air pollution deposition on a roadside vegetation barrier in a Mediterranean environment:combined effect of evergreen shrub species and planting density[J]. Science of the Total Environment. 2018, 643:725-737.
doi: 10.1016/j.scitotenv.2018.06.217 |
[11] |
Popek R, Przybysz A, Gawronska H, et al. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions[J]. Ecotoxicology and Environmental Safety, 2018, 163:56-62.
doi: 10.1016/j.ecoenv.2018.07.051 |
[12] | 常亚敏, 闫蓬勃, 杨军. 北京地区控制PM2.5污染的城市绿化树种选择建议[J]. 中国园林, 2015, 31(1):69-73. |
[13] | 王蕾, 刘连友, 王志, 等. 北京市园林植物吸附PM10与SO2总量及其健康效益[J]. 环境科学与技术, 2006, 29(9):1-3. |
[14] | 赵越, 金荷仙. 西湖景区滨水绿地植物群落可吸入颗粒物PM10浓度变化规律[J]. 中国园林, 2012, 28(9):78-82. |
[15] | 戴菲, 陈明, 朱晟伟, 等. 街区尺度不同绿化覆盖率对PM10、PM2.5的消减研究:以武汉主城区为例[J]. 中国园林, 2018, 34(3):105-110. |
[16] | 韩世明. 南昌市红谷滩新区居住绿地的生态效应研究[D]. 抚州:东华理工大学, 2017. |
[17] | 张灵艺, 秦华. 城市道路行道树绿带对PM2.5的滞尘效应及其变化分析[J]. 中国园林, 2015, 31(5):106-110. |
[18] | 牟浩. 城市道路绿带宽度对空气污染物的削减效率研究[D]. 武汉:华中农业大学, 2013. |
[19] | 徐欢, 赵晶晶, 李红. 道路绿地植物配置对PM2.5浓度分布与消减作用的影响[J]. 北方园艺, 2016, 9(24):65-69. |
[20] | 雷雅凯, 段彦博, 马格, 等. 城市绿地景观格局对PM2.5、PM10分布的影响及尺度效应[J]. 中国园林, 2018, 34(7):98-103. |
[21] | 李新宇, 赵松婷, 郭佳, 等. 公园绿地植物配置对空气PM2.5浓度的消减作用及影响因子[J]. 中国园林, 2016, 32(8):10-13. |
[22] | Champendal A, Kanevski M, Huguenot P E. Air pollution mapping using nonlinear land use regression models[C]// international conference on computational science and its applications.springer international publishing, 2014. |
[23] |
Morleyd W, Gulliver J A. Land use regression variable generation,modelling and prediction tool for air pollution exposure assessment[J]. Environmental Modelling and Software, 2018, 105:17-23.
doi: 10.1016/j.envsoft.2018.03.030 |
[24] | 岳峰, 戴菲, 郭晓华. 基于遥感反演的武汉市空气污染物与植被覆盖度相关性研究[J]. 风景园林, 2019, 26(1):76-81. |
[25] | 戴一枫, 张广何, 韦旭. 中国地区AERONET站点数据的使用概述[J]. 科技创新导报, 2018, 15(6):153-156. |
[26] | 李放, 吕达仁. 北京地区气溶胶光学厚度中长期变化特征[J]. 空气科学, 1996, 20(4):385-394. |
[27] | 黄印博, 黄红莲, 韩永, 等. 合肥、东南沿海地区气溶胶光学特性测量及模式分析[J]. 空气与环境光学报, 2007, 2(4):423-433. |
[28] | 赵胡笳, 马雁军, 王扬锋, 等. 沈阳空气气溶胶光学特性及其影响因子[J]. 气象与环境学报, 2015, 31(3):43-49. |
[29] | 晏利斌, 刘晓东. 京津冀地区气溶胶季节变化及与云量的关系[J]. 环境科学研究, 2009, 22(8):924-931. |
[30] | 任团伟, 郭照冰, 刘唯佳. 2009—2011年北京地区空气气溶胶光学特性季节变化规律研究[J]. 环境化学, 2015, 34(12):2239-2247. |
[31] | 吴奕霄, 银燕, 顾雪松, 等. 南京北郊空气气溶胶的吸湿性观测研究[J]. 中国环境科学, 2014, 34(8):1938-1949. |
[32] |
Stafoggia M, Bellander T, Bucci S, et al. Estimation of daily PM10 and PM2.5 concentrations in Italy,2013—2015,using a spatiotemporal land-use random-forest model. Environment International, 2019, 124:170-179.
doi: 10.1016/j.envint.2019.01.016 |
[33] | 于文婧, 刘晓娜, 孙丹峰, 等. 基于HJ-CCD数据和决策树法的干旱半干旱灌区土地利用分类[J]. 农业工程学报, 2016, 32(2):212-219. |
[34] | Wang Xiaoping, Zhang Fei, Jing Yunqing, et al. Relationship between land cover-landscape spatial characteristics and aerosol optical depth in Ebinur Lake Watershed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22):273-283. |
[35] | D A Chu, Kaufman Y J, Zibordi G, et al. Global monitoring of air pollution over land from the earth observing system-terra moderate resolution imaging spectroadiometer MODIS[J]. Journal of Geophysics Research, 2003, 108(21):4661-4679. |
[36] | Wang Jing, Christopher S A. Inter-comparison between satellite-derives aerosol optical thickness and PM2.5 mass:implication for air quality studies[J]. Geophysical Research Letters, 2003, 30(21):465-471. |
[37] | 岳峰, 戴菲, 傅凡 等. 基于时间序列遥感的武汉绿地景观格局与气溶胶光学厚度的相关性[J]. 中国城市林业, 2020, 18(1):13-19. |
[38] | 刘秀位, 张小雨, 张喜英. 大气气溶胶增加对作物的影响研究进展[J]. 生态学报, 2016, 36(7):2084-2090. |
[1] | HAO Jun, LYU Kangting, HU Tianqi, WANG Yunge, XU Gang. Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning [J]. Forest and Grassland Resources Research, 2024, 0(1): 65-72. |
[2] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[3] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[4] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[5] | ZOU Weimin, CHEN Chao, HUANG Lei, SONG Meixuan, LI Xuejian, DU Huaqiang. Geographic Weighted Regression Model Combined with Remote Sensing for Estimating Forest Aboveground Carbon Storage of Songyang County [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 132-140. |
[6] | LIANG Licheng, FU Xiaoqiang, ZHANG Bin, CHENG Guxun, LI Zuohui. Dynamic Monitoring of Spartina alterniflora in Xiangshan Harbor Based on GEE and Random Forest [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 38-45. |
[7] | ZHOU Mei, LI Chungan, YANG Chengling, LI Zhen. Experiments on Estimating Planted Forest Inventory Attributes Based on UAV-LiDAR Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 90-97. |
[8] | ZHANG Huifang, ZHU Yali, ZHANG Jinglu, GAO Jian, DILIXIATI·Baoerhan . Above-Ground Biomass Prediction of Arbor Forest in Altay Mountain Area Based on High-Resolution Remote Sensing Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 104-110. |
[9] | XIE Zhuohong, LIU Lijie, MO Yanqing, CHEN Chumin, MA Zhenhuan, LIU Ping. Evaluation and Optimization of Regional River System Forest Landscape Pattern in Forest Urban Agglomeration of Pearl River Delta [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 118-125. |
[10] | NIE Jing, LU Chi, OU Guanglong, XU Hui. Two-Stage Sampling Estimation of Above-Ground Biomass of Pinus kesiya var.langbianensis Based on Remote Sensing Factors from Landsat8 OLI [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 68-75. |
[11] | YANG Xueqing, SUN Zhichao, WANG Lisheng, CHAI Zheng, QIU Yiwen, JIANG Chunying. Study of Sampling Survey Method for Forest Fuels Based on Large Plots [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 53-59. |
[12] | QIN Lin, MENG Xianjin, ZHANG Shuihua, XUE Yadong, LIU Xinke, Xing Peng. Application Evaluation of BJ3 Satellite Data in Remote Sensing Monitoring of Pine Wilt Disease [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 126-133. |
[13] | TIAN Haijing, WANG Lin, HAN Liliang, FAN Yunbao, YANG Jilin. Grassland Vegetation Coverage Retrieval Based on Sentinel-2 Multi-Spectral Remote Sensing Data: A Case Study of Inner Mongolia Autonomous Region [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 134-140. |
[14] | REN Tianchen, CHEN Junfeng, LIU Nan. Dynamic Change and Influencing Factors of Vegetation Cover over the Past 30 years in the Wutai Mountain Area [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 89-99. |
[15] | HAO Shuai, WANG Xing, ZHANG Qiuliang, WANG Bing, TIAN Yuan. Study on Remote Sensing Extractions of Burned Areas in Greater Khingan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 75-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||