FOREST RESOURCES WANAGEMENT ›› 2021›› Issue (4): 157-165.doi: 10.13466/j.cnki.lyzygl.2021.04.020
• Technical Application • Previous Articles Next Articles
DU Zhi1(), CHEN Zhenxiong1(
), MA Kaisen2, LIU Ziwei1, GU Xinggui2
Received:
2021-06-16
Revised:
2021-07-14
Online:
2021-08-28
Published:
2021-09-26
Contact:
CHEN Zhenxiong
E-mail:674862391@qq.com;zhenxiongchen@qq.com
CLC Number:
DU Zhi, CHEN Zhenxiong, MA Kaisen, LIU Ziwei, GU Xinggui. Estimating Standing Volume in Southern Collective Forest Region Based on the Unmanned Aerial Vehicle LiDAR Characteristic Variables[J]. FOREST RESOURCES WANAGEMENT, 2021, (4): 157-165.
Tab.3
Progressive regression model statistics
树种 | 变量 | 标准误差 | T检验 | VIF |
---|---|---|---|---|
桉树 (Eucalyptus robusta) | 常数Constant | 1.115 | -4.728 | - |
EP_30th | 0.088 | 11.009 | 1.002 | |
IK | 0.090 | -2.670 | 1.002 | |
杉木 (Cunninghamia lanceolata) | 常数Constant | 1.210 | -5.753 | - |
EP_5th | 0.182 | 5.823 | 1.282 | |
CC | 1.605 | 6.234 | 1.125 | |
EK | 0.001 | 6.360 | 1.245 | |
DM_5 | 4.718 | 4.015 | 1.347 | |
天然阔叶 | 常数Constant | 1.566 | 1.913 | - |
EP_5th | 0.287 | 4.664 | 5.390 | |
GR | 1.888 | -2.428 | 1.777 | |
LAI | 0.147 | -2.095 | 4.300 |
Tab.5
Logistic regression volume forecast model
树种 | 变量数 | 模型 |
---|---|---|
桉树(Eucalyptus robusta) | 2 | |
杉木(Cunninghamia lanceolata) | 4 | |
天然阔叶林 | 3 | |
Tab.6
Comparison of the accuracy of the three volume estimate models
模型 | 树种 | R2 | RMSE/(m3/hm2) | rRMSE/% | MAE/(m3/hm2) |
---|---|---|---|---|---|
多元线性回归 | 桉树(Eucalyptus robusta) | 0.84 | 24.07 | 31.56 | 19.80 |
杉木(Cunninghamia lanceolata) | 0.91 | 24.30 | 19.93 | 18.90 | |
天然阔叶 | 0.73 | 30.90 | 35.38 | 25.05 | |
Logistic回归 | 桉树(Eucalyptus robusta) | 0.91 | 18.30 | 24.06 | 15.00 |
杉木(Cunninghamia lanceolata) | 0.90 | 25.05 | 20.56 | 19.95 | |
天然阔叶 | 0.73 | 31.35 | 35.92 | 24.75 | |
随机森林 | 桉树(Eucalyptus robusta) | 0.97 | 12.60 | 16.59 | 8.55 |
杉木(Cunninghamia lanceolata) | 0.93 | 24.45 | 20.00 | 16.65 | |
天然阔叶 | 0.90 | 18.45 | 18.20 | 11.55 |
[1] | Organization A. FAO Voluntary Guidelines on National Forest Monitoring[M]. Italy:Food and Agriculture Organization of the United Nations, 2017. |
[2] |
Zhao Panpan, Lu Dengsheng, Wang Guangxing, et al. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 53:1-15.
doi: 10.1016/j.jag.2016.08.007 |
[3] |
Zhang Yuanxun, Schauer J J, Zhang Yuanhang, et al. Correction to characteristics of particulate carbon emissions from real-world Chinese coal combustion[J]. Environmental Science & Technology, 2017, 51(8):4734.
doi: 10.1021/acs.est.7b01543 |
[4] |
Di Cosmo L, Gasparini P, Tabacchi G. A national-scale,stand-level model to predict total above-ground tree biomass from growing stock volume[J]. Forest Ecology and Management, 2016, 361:269-276.
doi: 10.1016/j.foreco.2015.11.008 |
[5] | 汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 31(5):1311-1318. |
[6] | Cao Lin, Coops N C, Innes J L, et al. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data[J]. Remote Sens.Environ. 2016, 178:158-171. |
[7] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5):1138-1150. |
[8] | 刘琼阁, 彭道黎, 涂云燕. 基于偏最小二乘回归的森林蓄积量遥感估测[J]. 中南林业科技大学学报, 2014, 34(2):81-84. |
[9] | 洪奕丰, 林辉, 严恩萍, 等. 基于偏最小二乘法的平南县森林蓄积量估测模型研究[J]. 中南林业科技大学学报, 2011, 31(7):80-85. |
[10] | 曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2):31-38. |
[11] | 侯晓静, 明金科, 秦荣水, 等. 基于随机森林模型的交界域火灾风险分析[J]. 林业科学, 2019, 55(8):194-200. |
[12] | 陈妍, 宋豫秦, 王伟. 基于随机森林回归的草场植被盖度反演模型研究——以新疆阿勒泰地区布尔津县为例[J]. 生态学报, 2018, 38(7):2384-2394. |
[13] | 袁钰娜, 彭道黎, 王威, 等. 利用机载激光雷达技术估测东北林区典型针叶林的蓄积量[J]. 应用生态学报, 2021, 32(3):836-844. |
[14] | 邢艳秋, 姚松涛, 李梦颖, 等. 基于机载全波形LiDAR数据的森林地上生物量估测算法研究[J]. 森林工程, 2017, 33(4):21-26. |
[15] | 李平昊, 申鑫, 代劲松, 等. 机载激光雷达人工林单木分割方法比较和精度分析[J]. 林业科学, 2018, 54(12):127-136. |
[16] | 李欢, 李明泽, 范文义, 等. 基于机载激光雷达的林隙结构参数提取[J]. 林业科学, 2018, 54(10):98-107. |
[17] | 耿林, 李明泽, 范文义, 等. 基于机载LiDAR的单木结构参数及林分有效冠的提取[J]. 林业科学, 2018, 54(7):62-72. |
[18] |
Zhang Wuming, Qi Jianbo, Wan Peng, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
doi: 10.3390/rs8060501 |
[19] |
Yan Wanqian, Guan Haiyan, Cao Lin, et al. A self-adaptive mean shift tree-segmentation method Using UAV LiDAR data[J]. Remote Sensing, 2020, 12(3):515.
doi: 10.3390/rs12030515 |
[20] | 邢涛, 汪献义, 邢艳秋. 基于特征选择的TLS蒙古栎人工林点云分类研究[J]. 中南林业科技大学学报, 2020, 40(3):1-7. |
[21] | 范文义, 李明泽, 杨金明. 长白山林区森林生物量遥感估测模型[J]. 林业科学, 2011, 47(10):16-20. |
[22] | 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129-136. |
[23] |
Minh D H T, Le Toan T, Rocca F, et al. SAR tomography for the retrieval of forest biomass and height:cross-validation at two tropical forest sites in French Guiana[J]. Remote Sensing of Environment, 2016, 175:138-147.
doi: 10.1016/j.rse.2015.12.037 |
[1] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
[2] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[3] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[4] | ZHANG Guoli, CI Xuelun, YANG Xueqing, JIANG Chunying, SUN Zhichao, MENG Haiding. Study on Spatio-Temporal Distribution Characteristics and Susceptibility Analysis of Forest Fire [J]. Forest and Grassland Resources Research, 2023, 0(5): 48-55. |
[5] | LIANG Licheng, FU Xiaoqiang, ZHANG Bin, CHENG Guxun, LI Zuohui. Dynamic Monitoring of Spartina alterniflora in Xiangshan Harbor Based on GEE and Random Forest [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 38-45. |
[6] | WANG Xiaohui, ZHANG Huiru, PANG Yong, QIN Xianlin, LI Haikui, MENG Shili, YU Tao. Forest Vegetation Type Monitoring in the Natural Forest Protection Project Area [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 96-103. |
[7] | GAO Jinping, YU Huina, ZHAI Zhaokun. Application of High Resolution Multi-Mode Satellite in Forest Land Types and Tree Species Identification [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 127-132. |
[8] | SONG Yaxian, GU Guangtong. Driving Factors of Carbon Trading Price in Pilot Area of China Carbon Market and Its Temporal and Spatial Heterogeneity [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 32-41. |
[9] | WANG Xiaoyang, JIANG Youyi, LI Xiao, HU Yaxuan, ZHANG Jiazheng, LIU Bowei. A Multi-Temporal and Multi-Feature Larch Plantation Extraction Study Based on GF-1 Images [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 109-118. |
[10] | HUANG Bingqian, YUE Cairong, ZHU Bodong. Estimation of Forest Volume Based on Multi-Scale Remote Sensing Features of GF-1 [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(3): 54-59. |
[11] | HUANG Jincheng, LIU Hongsheng, NING Jinkui, OUYANG Xunzhi, ZANG Hao. Study of Adaptability of the Primary Afforestation Species in Chongyi County,Jiangxi Province Based on Random Forest [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 117-125. |
[12] | LONG Zhihao, LUO Peng, XU Dengping, LI Zhen, DAI Huabin. Inversion Research of Forest Stock Volume Using the Red Edge Bands of Sentinel-2A [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 126-134. |
[13] | TANG Jinhao, ZHANG Jialong, CHEN Liye, CHENG Tao. Research on Estimation of Aboveground Biomass and Scale Conversion for Pinus densata Mast [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 83-89. |
[14] | XIAO Yue, XU Xiaodong, LONG Jiangping, LIN Hui. Research on Inversion of Forest Volume Based on Domestic High-Resolution Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 101-107. |
[15] | LI Bin, LI Chonggui, LI Yu. Research on Larch Extraction in Saihanba Mechanical Forest Farm Based on Sentinel-2 Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 117-123. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 334
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 438
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||