FOREST RESOURCES WANAGEMENT ›› 2022›› Issue (1): 106-113.doi: 10.13466/j.cnki.lyzygl.2022.01.013
• Technical Application • Previous Articles Next Articles
ZHOU Xiangbei(), LI Chungan(), YU Zhu, CHEN Zhongchao, SU Kai
Received:
2021-12-08
Revised:
2021-12-22
Online:
2022-02-28
Published:
2022-03-31
Contact:
LI Chungan
E-mail:xiangbeizhou@st.gxu.edu.cn;gxali@126.com
CLC Number:
ZHOU Xiangbei, LI Chungan, YU Zhu, CHEN Zhongchao, SU Kai. Classification of Vertical Forest Structure of Overstory in Subtropical Forests Using Airborne Lidar Data[J]. FOREST RESOURCES WANAGEMENT, 2022, (1): 106-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2022.01.013
Tab.2
Classification rules of vertical structure of overstory based on continuous vertical canopy profile
编号 | 分类规则 | 类型 | |
---|---|---|---|
A(1) | Null | UT1 | |
B(1a) | | OT1 | |
B(1b) | | T1T3 | |
B(2a) | (hp99/3< | OT1T2 | |
B(2b) | (hp99/3< | OT1 | |
B(2c) | (hp99/3< | T1T2T3 | |
B(2d) | (hp99/3< | UT1T2 | |
B(3a) | (3.0< | T1T2T3 | |
B(3b) | (3.0< | OT1T2 | |
B(3c) | (3.0< | UT1T2 | |
B(3d) | (3.0< | OT1 | |
B(3e) | (3.0< | OT1T2 | |
B(3f) | (3.0< | OT1 | |
B(3g) | (3.0< | UT1 | |
B(4a) | (1.0< | T1T2T3 | |
B(4b) | (1.0< | UT1T2 | |
B(4c) | (1.0< | UT1T2 | |
B(4d) | (1.0< | UT1 | |
B(4e) | (1.0≤ | UT1 | |
B(5a) | | UT1 | |
B(5b) | | UT1T2 | |
C(1a) | HPEAK1≥2/3 hp99 and HPEAK2≥hp99/3 and HUL2≥3.0 and(HLA1+HLA2)/HCS<0.65 | OT1 | |
C(1b) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2≥3.0 and(HLA1+HLA2)/HCS≥0.65 | OT1T2 | |
C(1c) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2<3.0 and hp99≥15.0 | T1T2T3 | |
C(1d) | HPEAK1≥2/3hp99 and HPEAK2≥hp99/3 and HUL2<3.0 and hp99<15.0 | UT1T2 | |
C(2a) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99≥15.0 and CMID<0.1 | T1T3 | |
C(2b) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99≥15.0 and CMID≥0.1 | T1T2T3 | |
C(2c) | HPEAK1≥2/3hp99 and(3.0<HPEAK2≤hp99/3)and hp99<15.0 | UT1T2 | |
C(3a) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS<0.35 | OT1 | |
C(3b) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS≥0.65 and HLA2/HCS<0.35 | OT1T2 | |
C(3c) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS≥0.35 and(HLA1+HLA2)/HCS≥0.80 | T1T2T3 | |
C(3d) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99≥15.0 and HLA1/HCS<0.65 and HLA2/HCS≥0.35 and(HLA1+HLA2)/HCS<0.80 | T1T3 | |
C(3e) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS≥0.65 | UT1T2 | |
C(3f) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS<0.65 and HUL2<hp99/3 | UT1 | |
C(3g) | HPEAK1≥2/3hp99 and(1.0≤HPEAK2<3.0)and hp99<15.0 and HLA1/HCS<0.65 and HUL2≥hp99/3 | OT1 | |
C(4a) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS≥0.8 | T1T2T3 | |
C(4b) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS<0.8 and HUL2<hp99/3 | UT1T2 | |
C(4c) | (hp99/3≤HPEAK1<2/3hp99)and hp99≥15.0 and(HLA1+HLA2)/HCS<0.8 and HUL2≥hp99/3 | OT1T2 | |
C(4d) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS<0.65 and HUL2<hp99/3 | UT1 | |
C(4e) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS<0.65 and HUL2≥hp99/3 | OT1 | |
C(4f) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS≥0.65 and HUL2<hp99/3 | UT1T2 | |
C(4g) | (hp99/3≤HPEAK1<2/3hp99)and hp99<15.0 and(HLA1+HLA2)/HCS≥0.65 and HUL2≥hp99/3 | OT1T2 | |
D(1a) | HPEAK3≥3.0 and(HLA1+HLA2+HLA3)/HCS≥0.80 | T1T2T3 | |
D(1b) | HPEAK3≥3.0 and(HLA1+HLA2+HLA3)/HCS<0.80 | OT1T2 | |
D(2a) | HPEAK3<3.0 and(HLA1+HLA2+HLA3)/HCS≥0.80 | T1T2T3 | |
D(2b) | HPEAK3<3.0 and(HLA1+HLA2+HLA3)/HCS<0.80 | OT1T2 |
Tab.3
Confusion matrix of classification of vertical canopy structure
类型 | 真实值 | 总数 | 用户精度/% | |||||
---|---|---|---|---|---|---|---|---|
(1)UT1 | (2)OT1 | (3)UT1T2 | (4)OT1T2 | (5)T1T3 | (6)T1T2 T3 | |||
(1)UT1 | 190 | 0 | 1 | 0 | 0 | 0 | 191 | 99.5 |
(2)OT1 | 5 | 534 | 0 | 2 | 0 | 2 | 543 | 98.3 |
(3)UT1T2 | 9 | 0 | 67 | 6 | 1 | 1 | 84 | 79.8 |
(4)OT1T2 | 17 | 5 | 6 | 164 | 1 | 0 | 193 | 85.0 |
(5)T1T3 | 0 | 3 | 0 | 0 | 21 | 1 | 25 | 84.0 |
(6)T1T2 T3 | 1 | 1 | 5 | 1 | 2 | 101 | 111 | 91.0 |
总数 | 222 | 543 | 79 | 173 | 25 | 105 | 1147 | |
生产者精度/% | 85.6 | 98.3 | 84.8 | 94.8 | 84.0 | 96.2 |
[1] |
Zimblea D A, Evansb D L, Carlson G C, et al. Characterizing vertical forest structure using small-footprint airborne LiDAR[J]. Remote Sensing of Environment, 2003,87(2-3):171-182.
doi: 10.1016/S0034-4257(03)00139-1 |
[2] |
Pommerening A, Sánchez Meador A J. Tamm review:Tree interactions between myth and reality[J]. Forest Ecology and Management, 2018,424:164-176.
doi: 10.1016/j.foreco.2018.04.051 |
[3] | 惠刚盈, 赵中华, 陈明辉. 描述森林结构的重要变量[J]. 温带林业研究, 2020,3(1):14-20. |
[4] | 方红亮. 森林垂直结构参数实测与遥感研究进展:以叶面积指数和聚集指数为例[J]. 科学通报, 2021,66(24):3141-3153. |
[5] |
Bourdier T, Cordonnier T, Kunstler G, et al. Tree size inequality reduces forest productivity:an analysis combining inventory data for ten european species and a light competition model[J]. Plos One, 2016,11(3):e0151852.
doi: 10.1371/journal.pone.0151852 |
[6] |
Krishna M P, Mohan M. Litter decomposition in forest ecosystems:a review[J]. Energy,Ecology and Environment, 2017,2(4):236-249.
doi: 10.1007/s40974-017-0064-9 |
[7] | 楼一恺, 范忆, 戴其林, 等. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系[J]. 生态学报, 2021,41(21):8568-8577. |
[8] |
Hall S A, Burke I C, Box D O, Kaufmann M R, Stoker J M. Estimating stand structure using discrete-return lidar:an example from low density,fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005,208:189-209.
doi: 10.1016/j.foreco.2004.12.001 |
[9] |
Baker P J, Wilson J S. A quantitative technique for the identification of canopy stratification in tropical and temperate forests[J]. Forest Ecology and Management, 2000,127:77-86.
doi: 10.1016/S0378-1127(99)00118-8 |
[10] |
Bouvier M, Durrieu S, Fournier R A, et al. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data[J]. Remote Sensing of Environment, 2015,156:322-334.
doi: 10.1016/j.rse.2014.10.004 |
[11] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016,20(5):1138-1150. |
[12] | 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018,22(5):872-888. |
[13] |
Morsdorf F, Mårell A, Koetz B, et al. Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning[J]. Remote Sensing of Environment, 2010,114(7):1403-1415.
doi: 10.1016/j.rse.2010.01.023 |
[14] |
Leiterer R, Torabzadeh H, Furrer R, et al. Towards automated characterization of canopy layering in mixed temperate forests using airborne laser scanning[J]. Forests, 2015,6(11):4146-4167.
doi: 10.3390/f6114146 |
[15] |
Latifi H, Heurich M, Hartig F, et al. Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data[J]. Forestry, 2016,89(1):69-81.
doi: 10.1093/forestry/cpv032 |
[16] |
Kwon S, Jung H, Baek W, et al. Classification of forest vertical structure in south korea from aerial orthophoto and lidar data using an artificial neural network[J]. Applied Sciences, 2017,7(10):1046.
doi: 10.3390/app7101046 |
[17] |
Adnan S, Maltamo M, Coomes D A, et al. A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions[J]. Forest Ecology and Management, 2019,433:111-121.
doi: 10.1016/j.foreco.2018.10.057 |
[18] |
Xu Zhaoshang, Zheng Guang, Moskal L M. Stratifying forest overstory for improving effective LAI estimation based on aerial imagery and discrete laser scanning data[J]. Remote Sensing, 2020,12(13):2126.
doi: 10.3390/rs12132126 |
[19] |
Jarron L R, Coops N C, MacKenzie W H, et al. Detection of sub-canopy forest structure using airborne LiDAR[J]. Remote Sensing of Environment, 2020,244:111770.
doi: 10.1016/j.rse.2020.111770 |
[20] | 骆期邦, 曾伟生, 贺东北 .等. 林业数表模型——理论、方法与实践[M]. 长沙: 湖南科学技术出版社, 2001. |
[21] |
Parker G G, Brown N J. Forest canopy stratification-is it useful?[J]. American Naturalist, 2000,155(4):473-484.
doi: 10.1086/303340 |
[22] | Neto S E N, Paula A D, Tagliaferre C, et al. Performance assessment of methodologies for vertical stratification in native forest[J]. Ciênc.Florest, 2018,28(4):1583-1591. |
[23] |
Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006,104(1):50-61.
doi: 10.1016/j.rse.2006.04.019 |
[24] |
Muss J D, Mladenoff D J, Townsend P A, et al. A pseudo-waveform technique to assess forest structure using discrete lidar data[J]. Remote Sensing of Environment, 2011,115(3):824-835.
doi: 10.1016/j.rse.2010.11.008 |
[1] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
[2] | TANG Jiajun, WANG Gang, CHAI Zongzheng. Single-TreeVolume Estimation of Pinus massoniana based on Airborne LiDAR Point Cloud [J]. Forest and Grassland Resources Research, 2023, 0(6): 105-112. |
[3] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[4] | ZHANG Shunmin, HUANG Xiaoyuan, LIU Junze, CHEN Rong, LI Xiang. Dynamic Study of Forest Landscape Morphology and Thermal Environment in Dali City [J]. Forest and Grassland Resources Research, 2023, 0(5): 122-132. |
[5] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[6] | ZOU Weimin, CHEN Chao, HUANG Lei, SONG Meixuan, LI Xuejian, DU Huaqiang. Geographic Weighted Regression Model Combined with Remote Sensing for Estimating Forest Aboveground Carbon Storage of Songyang County [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 132-140. |
[7] | LIU Hongsheng, OUYANG Wenxin, WEI Yingjie, XIE Yiqiu, LI Jianjun. Research on Inversion of Combustible Moisture Content in the Pinus Tabulaeformis Canopy Based on Sentinel-2B [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 141-149. |
[8] | XING Yuanjun, WEN Kunjian, GUO Xiaoni, SONG Yabin, HU Zhongyue, JIANG Tengyu, HE Zijing. Single-Tree Crown Delineation in Plain Afforestation Areas Based on Mask R-CNN [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 115-120. |
[9] | ZHOU Mei, LI Chungan, YANG Chengling, LI Zhen. Experiments on Estimating Planted Forest Inventory Attributes Based on UAV-LiDAR Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 90-97. |
[10] | ZHANG Huifang, ZHU Yali, ZHANG Jinglu, GAO Jian, DILIXIATI·Baoerhan . Above-Ground Biomass Prediction of Arbor Forest in Altay Mountain Area Based on High-Resolution Remote Sensing Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 104-110. |
[11] | WANG Xiaohui, ZHANG Huiru, PANG Yong, QIN Xianlin, LI Haikui, MENG Shili, YU Tao. Forest Vegetation Type Monitoring in the Natural Forest Protection Project Area [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 96-103. |
[12] | XIE Wenchun, LI Qiangfeng, LI Yanchun, WU Zhenshan, YANG Zhengfan. Object-Oriented Classification of Wetland Vegetation Community in Jilin-1 Remote Sensing Image [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 141-152. |
[13] | NIE Jing, LU Chi, OU Guanglong, XU Hui. Two-Stage Sampling Estimation of Above-Ground Biomass of Pinus kesiya var.langbianensis Based on Remote Sensing Factors from Landsat8 OLI [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 68-75. |
[14] | LUO Hongbin, YUE Cairong, WANG Ning. Forest canopy height inversion based on interferometric phase-coherence amplitude method and baseline selection [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 119-125. |
[15] | QIN Lin, MENG Xianjin, ZHANG Shuihua, XUE Yadong, LIU Xinke, Xing Peng. Application Evaluation of BJ3 Satellite Data in Remote Sensing Monitoring of Pine Wilt Disease [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 126-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||