FOREST RESOURCES WANAGEMENT ›› 2022›› Issue (1): 132-141.doi: 10.13466/j.cnki.lyzygl.2022.01.016
• Technical Application • Previous Articles Next Articles
CHEN Zhoujuan1(), CHENG Guang2, BU Yuankun1, HUANG Wei1, CHEN Jiahui1, LI Weizhong1()
Received:
2021-12-15
Revised:
2021-12-31
Online:
2022-02-28
Published:
2022-03-31
Contact:
LI Weizhong
E-mail:chenzj@nwafu.edu.cn;liweizhong@nwafu.edu.cn
CLC Number:
CHEN Zhoujuan, CHENG Guang, BU Yuankun, HUANG Wei, CHEN Jiahui, LI Weizhong. Single Tree Parameters Extraction of Broad-Leaved Forest Based on UAV Tilting Photography[J]. FOREST RESOURCES WANAGEMENT, 2022, (1): 132-141.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2022.01.016
[1] | 李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016,20(5):1138-1150. |
[2] |
Brieger F, Herzschuh U, Pestryakova L A, et al. Advances in the derivation of northeast Siberianforest metrics using high-resolution UAV-based photogrammetric point clouds[J]. Remote Sensing, 2019,11(12):1447.
doi: 10.3390/rs11121447 |
[3] |
Jayathunga S, Owari T, Tsuyuki S. Evaluating the performance of photogrammetric products using fixed-wing UAV imagery over a mixed conifer-broadleaf forest:comparison with airborne laser scanning[J]. Remote Sensing, 2018,10(2):187.
doi: 10.3390/rs10020187 |
[4] |
Thiel C, Schmullius C. Comparison of UAV photograph-based and airborne lidar-based point clouds over forest from a forestry application perspective[J]. International Journal of Remote Sensing, 2017,38(8-10):2411-2426.
doi: 10.1080/01431161.2016.1225181 |
[5] | Mlambo R, Woodhouse I, Gerard F, et al. Structure from Motion(SfM)photogrammetry with drone data: alow cost method for monitoring greenhouse gas emissions from forests in developing countries[J]. Multidisciplinary Digital Publishing Institute, 2017,8(3):68. |
[6] | 李涛, 冯仲科, 于东海, 等. 无人机摄影获取单木三维信息方法研究[J]. 中南林业科技大学学报, 2019,39(3):61-68. |
[7] | 孙英伟, 林文树. 基于SFM算法的单木结构参数提取研究[J]. 西北林学院学报, 2020,35(5):180-184. |
[8] |
Swetnam T L, Falk D A. Application of metabolic scaling theory to reduce error in local maxima tree segmentation from aerial LiDAR[J]. Forest Ecology and Management, 2014,323:158-167.
doi: 10.1016/j.foreco.2014.03.016 |
[9] | 刘见礼, 张志玉, 倪文俭, 等. 无人机影像匹配点云单木识别算法[J]. 遥感信息, 2019,34(1):96-104. |
[10] | 王雅佩, 王振锡, 李擎, 等. 基于无人机影像的天山云杉林伐后更新地林分密度估测研究[J]. 中南林业科技大学学报, 2020,40(5):57-66. |
[11] |
Yang Jian, He Yuhong, Caspersen J P, et al. Delineating individual tree crowns in an uneven-aged,mixed broadleaf forest using multispectral watershed segmentation and multiscale fitting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,10(4):1390-1401.
doi: 10.1109/JSTARS.4609443 |
[12] |
Gaetano R, Masi G, Poggi G, et al. Marker-controlled watershed-based segmentation of multiresolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,53(6):2987-3004.
doi: 10.1109/TGRS.2014.2367129 |
[13] |
Korpela I, Anttila P, Pitkänen J. The performance of a local maxima method for detecting individual tree tops in aerial photographs[J]. International Journal of Remote Sensing, 2006,27(6):1159-1175.
doi: 10.1080/01431160500354070 |
[14] |
Mohan M, Silva C A, Klauberg C, et al. Individual tree detection from unmanned aerial vehicle(UAV)derived canopy height model in an open canopy mixed conifer forest[J]. Forests, 2017,8(9):340.
doi: 10.3390/f8090340 |
[15] | 刘江俊, 高海力, 方陆明, 等. 基于无人机影像的树顶点和树高提取及其影响因素分析[J]. 林业资源管理, 2019(4):107-116. |
[16] | 袁梓健, 舒清态, 赵洪莹, 等. 基于无人机可见光影像的华山松人工林计测参数提取[J]. 林业资源管理, 2021(2):110-116. |
[17] | 陈崇成, 李旭, 黄洪宇. 基于无人机影像匹配点云的苗圃单木冠层三维分割[J]. 农业机械学报, 2018,49(2):149-155. |
[18] | 杜意鸿, 尹田, 周雪梅, 等. 倾斜摄影测量技术提取油松单木信息[J]. 北京林业大学学报, 2021,43(4):77-86. |
[19] | 李祥, 吴金卓, 林文树, 等. 一种高郁闭度林分树高的估测方法[J]. 测绘科学, 2019,44(7):128-134. |
[20] |
Dalponte M, Coomes D A. Tree‐centric mapping of forest carbon density from airborne laser scanning and hyperspectral data[J]. Methods in Ecology and Evolution, 2016,7(10):1236-1245.
doi: 10.1111/2041-210X.12575 pmid: 28008347 |
[21] |
Hirschmugl M, Ofner M, Raggam J, et al. Single tree detection in very high resolution remote sensing data[J]. Remote Sensing of Environment, 2007,110(4):533-544.
doi: 10.1016/j.rse.2007.02.029 |
[22] | 李平昊, 申鑫, 代劲松, 等. 机载激光雷达人工林单木分割方法比较和精度分析[J]. 林业科学, 2018,54(12):127-136. |
[23] | 杨全月, 董泽宇, 马振宇, 等. 基于SfM的针叶林无人机影像树冠分割算法[J]. 农业机械学报, 2020,51(6):181-190. |
[24] |
Guerra-Hernández J, Cosenza D N, Rodriguez L C E, et al. Comparison of ALS-and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations[J]. International Journal of Remote Sensing, 2018,39(15-16):5211-5235.
doi: 10.1080/01431161.2018.1486519 |
[25] |
Picos J, Bastos G, Míguez D, et al. Individual tree detection in a eucalyptus plantation using unmanned aerial vehicle(UAV)-LiDAR[J]. Remote Sensing, 2020,12(5):885.
doi: 10.3390/rs12050885 |
[26] |
Xu Wenbing, Deng Susu, Liang Dan, et al. A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data[J]. Remote Sensing, 2021,13(7):1278.
doi: 10.3390/rs13071278 |
[27] | Abd Latif Z, Aman S N A, Ghazali R. Delineation of tree crown and canopy height using airborne LiDAR and aerial photo[C]. 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011:354-358. |
[28] |
Chasmer L, Hopkinson C, Treitz P. Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar[J]. Canadian Journal of Remote Sensing, 2006,32(2):116-125.
doi: 10.5589/m06-011 |
[29] | Chen Qi, Baldocchi D, Gong Peng, et al. Isolating individual trees in a savanna woodland using small footprint lidar data[J]. Photogrammetric Engineering & Remote Sensing, 2006,72(8):923-932. |
[30] |
Zhao Kaiguang, Popescu S, Nelson R. Lidar remote sensing of forest biomass:A scale-invariant estimation approach using airborne lasers[J]. Remote Sensing of Environment, 2009,113(1):182-196.
doi: 10.1016/j.rse.2008.09.009 |
[31] |
Ma Zhenyu, Pang Yong, Wang Di, et al. Individual tree crown segmentation of a larch plantation using airborne laser scanning data based on region growing and canopy morphology features[J]. Remote Sensing, 2020,12(7):1078.
doi: 10.3390/rs12071078 |
[1] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[2] | LIU Hongsheng, OUYANG Wenxin, WEI Yingjie, XIE Yiqiu, LI Jianjun. Research on Inversion of Combustible Moisture Content in the Pinus Tabulaeformis Canopy Based on Sentinel-2B [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 141-149. |
[3] | DU Zhi, CHEN Zhenxiong, Li Rui, LUO Chongbin, YANG Guojin, ZENG Weisheng. Development of Tree Height-DBH Model for Cunninghamia lanceolata and Eucalyptus Robusta Based on Stand Dominant Height and Climatic Factors [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 36-42. |
[4] | ZENG Weisheng, YANG Xueyun. Analysis of General Status and Examination of Estimation Errors for One-Variable Tree Volume Tables in China [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 43-49. |
[5] | ZHANG Xinjie, ZHENG Yanfeng, WEN Kunjian, WANG Pengjie, WU Fayun. Estimation of Single Tree Factor of Eucalyptus by Merging Airborne and Backpack LiDAR [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 131-137. |
[6] | HE Xiaofei, CHEN Xin, WANG Mengyao, MIAO Xue, FAN Changmeng, PENG Jiansong. Analysis of Tree Canopy Cover in Built-up Srea of Huize County, Yunnan Province Based on eCognition Image Interpretation [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 100-108. |
[7] | ZHOU Xiangbei, LI Chungan, YU Zhu, CHEN Zhongchao, SU Kai. Classification of Vertical Forest Structure of Overstory in Subtropical Forests Using Airborne Lidar Data [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 106-113. |
[8] | FU Anmin, GAO Xianlian, WU Fayun, GAO Jinping. A Method to Validate Airborne LIDAR CHM Producton Individual Tree Level [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 114-123. |
[9] | ZHOU Chenqin, YU Yongjun, FANG Luming, LIU Yuzhen, HU Jianjin. Effects of Flight Height and Canopy Density on Canopy Extraction of Metasequoia glyptostroboides [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 150-156. |
[10] | YE Peng, TANG Mengping. Analysis of Canopy Density and Crown Overlap of Evergreen Broad-Leaved Forest Based on GIS [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 70-79. |
[11] | LIU Yingchun, WU Fayun, SUN Zhongqiu, FU Anmin, GAO Jinping, GAO Xianlian, GAO Jianxin, CUI Chenyan, CHAO Zhi. Comprehensive Experiment Substitute for Multi-Payload Data of Terrestrial Ecosystem Carbon Inventory Satellite in Hainan [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 138-148. |
[12] | ZHANG Yanyan, WANG Qunxing, LUO Yusheng, LV Kangting, MA Ruiting, YAN Dongfeng. Effect of Forest Thinning on the Light Environmentof Quercus Variabilis Plantation and its Target Trees [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 79-85. |
[13] | SUN Yujiang, LI Fengtao, CHEN Xiangqin, ZHANG Lei, YANG Ning, ZHENG Da. Application of UAV Aerial Photo Data in Forest Information Extraction [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 160-164. |
[14] | PU Ying, ZENG Weisheng, YANG Fan. Tree Height-Diameter Regression Models Development and One-Variable Tree Volume Tables Examination in Beijing [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 62-66. |
[15] | WU Fayun, GAO Xianlian, ZHOU Rong, WANG Pengjie, FU Anmin. Research on Forest Biomass and Stock Volume Model Based on Stand Height and Canopy Density [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 61-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||