[1] |
Nichol J E, Sarker M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(3):930-948.
doi: 10.1109/TGRS.2010.2068574
|
[2] |
孙雪莲, 舒清态, 欧光龙. 基于随机森林回归模型的思茅松人工林生物量遥感估测[J]. 林业资源管理, 2015(1):71-76.
|
[3] |
Gleason C J, Im J. A review of remote sensing of forest biomass and biofuel:options for small-area applications[J]. GIScience & Remote Sensing, 2011, 48(2):141-170.
|
[4] |
闾妍宇, 李超, 欧光龙, 等. 基于地理加权回归模型的思茅松生物量遥感估测[J]. 林业资源管理, 2017(1):82-90.
|
[5] |
王佳, 宋珊芸, 刘霞, 等. 结合影像光谱与地形因子的森林蓄积量估测模型[J]. 农业机械学报, 2014, 45(5):216-220.
|
[6] |
蒋馥根, 孙华, 李成杰, 等. 联合GF-6和Sentinel-2红边波段的森林地上生物量反演[J]. 生态学报, 2021, 41(20):8222-8236.
|
[7] |
刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1):223-229.
|
[8] |
吴静, 吕玉娜, 李纯斌, 等. 基于多时相Sentinel-2A的县域农作物分类[J]. 农业机械学报, 2019, 50(9):194-200.
|
[9] |
蔡文婷, 赵书河, 王亚梅, 等. 结合Sentinel-2光谱与纹理信息的冬小麦作物茬覆盖度估算[J]. 遥感学报, 2020, 24(9):1108-1119.
|
[10] |
谢巧云. 考虑红边特性的多平台遥感数据叶面积指数反演方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
|
[11] |
Filho M G, Kuplich T M, Quadros F L F D. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data[J]. International Journal of Remote Sensing, 2020, 41(8):2861-2876.
doi: 10.1080/01431161.2019.1697004
|
[12] |
罗亚, 徐建华, 岳文泽, 等. 植被指数在城市绿地信息提取中的比较研究[J]. 遥感技术与应用, 2006(3):212-219.
|
[13] |
龙依, 蒋馥根, 孙华, 等. 基于HLS数据的森林蓄积量遥感反演[J]. 森林与环境学报, 2021, 41(6):620-628.
|
[14] |
Dong Taifeng, Meng Jihua, Shang Jiali, et al. Evaluation of chlorophyll-related vegetation indices using simulated Sentinel-2 data for estimation of crop fraction of absorbed photosynthetically active radiation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):4049-4059.
doi: 10.1109/JSTARS.2015.2400134
|
[15] |
蒋馥根. 植被叶面积指数kNN优化方法反演研究[D]. 长沙: 中南林业科技大学, 2020.
|
[16] |
刘茜, 杨乐, 柳钦火. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74.
|
[17] |
张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659.
|
[18] |
Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.
doi: 10.1109/36.134076
|
[19] |
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote sensing of environment, 1994, 48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1
|
[20] |
Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA special publication, 1974, 351(1974):309.
|
[21] |
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology, 2003, 160(3):271-282.
pmid: 12749084
|
[22] |
张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
|
[23] |
Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars[J]. Field Crops Research, 2011, 124(1):74-84.
doi: 10.1016/j.fcr.2011.06.007
|
[24] |
郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318-328.
|
[25] |
陈妙金, 汪小钦, 吴思颖. 基于随机森林算法的水土流失影响因子重要性分析[J]. 自然灾害学报, 2019, 28(4):209-219.
|
[26] |
Breiman L. Random Forests[J]. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324
|
[27] |
朱婉雪, 李仕冀, 张旭博, 等. 基于无人机遥感植被指数优选的田块尺度冬小麦估产[J]. 农业工程学报, 2018, 34(11):78-86.
|
[28] |
Lin Shangrong, Li Jing, Liu Qinhuo, et al. Evaluating the effectiveness of using vegetation indices based on red-edge reflectance from Sentinel-2 to estimate gross primary productivity[J]. Remote Sensing, 2019, 11(11):1303.
doi: 10.3390/rs11111303
|