FOREST RESOURCES WANAGEMENT ›› 2022›› Issue (2): 126-134.doi: 10.13466/j.cnki.lyzygl.2022.02.017
Previous Articles Next Articles
LONG Zhihao1(), LUO Peng2,3(
), XU Dengping4, LI Zhen1, DAI Huabin1
Received:
2022-02-08
Revised:
2022-04-13
Online:
2022-04-28
Published:
2022-06-13
Contact:
LUO Peng
E-mail:251686187@qq.com;lozpeng@ifrit.ac.cn
Tab.1
Band Information of the Sentinel-2A used in this study
波段 | 描述 | 中心波长/nm | 空间分辨率/m |
---|---|---|---|
蓝波段band2 | Blue | 490 | 10 |
绿波段band3 | Green | 560 | 10 |
红波段band4 | Red | 665 | 10 |
红边波段band5 | Red Edge1 | 705 | 20 |
红边波段band6 | Red Edge2 | 740 | 20 |
红边波段band7 | Red Edge3 | 783 | 20 |
近红外波段band8 | NIR | 842 | 10 |
红边波段band8A | Red Edge4 | 865 | 20 |
短波红外band11 | SWIR1 | 1610 | 20 |
短波红外band12 | SWIR2 | 2190 | 20 |
Tab.2
Calculation formula of vegetation indexes
植被指数 | 表达式 |
---|---|
ARVI[ | |
MSAVI[ | [2band8+1- |
NDVI[ | |
RECI[ | |
RENDVI[ | |
RESR[ | band8/band5 |
Tab.3
Correlation coefficient between each variable and forest stock volume
变量 | 相关系数 | 变量 | 相关系数 |
---|---|---|---|
band2 | 0.499** | band11 | 0.426** |
band3 | 0.438** | band12 | 0.579** |
band4 | 0.509** | ARVI | -0.637** |
band5 | 0.481** | MSAVI | -0.525** |
band6 | -0.13 | NDVI | -0.629** |
band7 | -0.213** | RECI | -0.565** |
band8 | -0.251** | RENDVI | -0.616** |
band8A | -0.213** | RESR | -0.594** |
Tab.4
Remote sensing estimation models and accuracy of stockpiles for each variable set
变量集 | 模型 | 决定 系数 (R2) | 均方根误差 (RMSE)/ (m3/hm2) | 相对均方根误差 (RRMSE) /% |
---|---|---|---|---|
变量集1 | 多元线性回归 | 0.31 | 37.23 | 30.37 |
变量集2 | 多元线性回归 | 0.36 | 36.51 | 29.78 |
变量集3 | 多元线性回归 | 0.40 | 35.82 | 29.23 |
变量集4 | 多元线性回归 | 0.40 | 35.82 | 29.23 |
变量集1 | 随机森林 | 0.22 | 38.59 | 33.06 |
变量集2 | 随机森林 | 0.59 | 31.19 | 25.65 |
变量集3 | 随机森林 | 0.62 | 30.28 | 24.90 |
变量集4 | 随机森林 | 0.66 | 28.63 | 23.54 |
[1] |
Nichol J E, Sarker M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(3):930-948.
doi: 10.1109/TGRS.2010.2068574 |
[2] | 孙雪莲, 舒清态, 欧光龙. 基于随机森林回归模型的思茅松人工林生物量遥感估测[J]. 林业资源管理, 2015(1):71-76. |
[3] | Gleason C J, Im J. A review of remote sensing of forest biomass and biofuel:options for small-area applications[J]. GIScience & Remote Sensing, 2011, 48(2):141-170. |
[4] | 闾妍宇, 李超, 欧光龙, 等. 基于地理加权回归模型的思茅松生物量遥感估测[J]. 林业资源管理, 2017(1):82-90. |
[5] | 王佳, 宋珊芸, 刘霞, 等. 结合影像光谱与地形因子的森林蓄积量估测模型[J]. 农业机械学报, 2014, 45(5):216-220. |
[6] | 蒋馥根, 孙华, 李成杰, 等. 联合GF-6和Sentinel-2红边波段的森林地上生物量反演[J]. 生态学报, 2021, 41(20):8222-8236. |
[7] | 刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1):223-229. |
[8] | 吴静, 吕玉娜, 李纯斌, 等. 基于多时相Sentinel-2A的县域农作物分类[J]. 农业机械学报, 2019, 50(9):194-200. |
[9] | 蔡文婷, 赵书河, 王亚梅, 等. 结合Sentinel-2光谱与纹理信息的冬小麦作物茬覆盖度估算[J]. 遥感学报, 2020, 24(9):1108-1119. |
[10] | 谢巧云. 考虑红边特性的多平台遥感数据叶面积指数反演方法研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017. |
[11] |
Filho M G, Kuplich T M, Quadros F L F D. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data[J]. International Journal of Remote Sensing, 2020, 41(8):2861-2876.
doi: 10.1080/01431161.2019.1697004 |
[12] | 罗亚, 徐建华, 岳文泽, 等. 植被指数在城市绿地信息提取中的比较研究[J]. 遥感技术与应用, 2006(3):212-219. |
[13] | 龙依, 蒋馥根, 孙华, 等. 基于HLS数据的森林蓄积量遥感反演[J]. 森林与环境学报, 2021, 41(6):620-628. |
[14] |
Dong Taifeng, Meng Jihua, Shang Jiali, et al. Evaluation of chlorophyll-related vegetation indices using simulated Sentinel-2 data for estimation of crop fraction of absorbed photosynthetically active radiation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):4049-4059.
doi: 10.1109/JSTARS.2015.2400134 |
[15] | 蒋馥根. 植被叶面积指数kNN优化方法反演研究[D]. 长沙: 中南林业科技大学, 2020. |
[16] | 刘茜, 杨乐, 柳钦火. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74. |
[17] | 张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659. |
[18] |
Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.
doi: 10.1109/36.134076 |
[19] |
Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote sensing of environment, 1994, 48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1 |
[20] | Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA special publication, 1974, 351(1974):309. |
[21] |
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology, 2003, 160(3):271-282.
pmid: 12749084 |
[22] | 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326. |
[23] |
Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars[J]. Field Crops Research, 2011, 124(1):74-84.
doi: 10.1016/j.fcr.2011.06.007 |
[24] | 郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318-328. |
[25] | 陈妙金, 汪小钦, 吴思颖. 基于随机森林算法的水土流失影响因子重要性分析[J]. 自然灾害学报, 2019, 28(4):209-219. |
[26] |
Breiman L. Random Forests[J]. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324 |
[27] | 朱婉雪, 李仕冀, 张旭博, 等. 基于无人机遥感植被指数优选的田块尺度冬小麦估产[J]. 农业工程学报, 2018, 34(11):78-86. |
[28] |
Lin Shangrong, Li Jing, Liu Qinhuo, et al. Evaluating the effectiveness of using vegetation indices based on red-edge reflectance from Sentinel-2 to estimate gross primary productivity[J]. Remote Sensing, 2019, 11(11):1303.
doi: 10.3390/rs11111303 |
[1] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
[2] | ZHANG Guoli, CI Xuelun, YANG Xueqing, JIANG Chunying, SUN Zhichao, MENG Haiding. Study on Spatio-Temporal Distribution Characteristics and Susceptibility Analysis of Forest Fire [J]. Forest and Grassland Resources Research, 2023, 0(5): 48-55. |
[3] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[4] | LIANG Licheng, FU Xiaoqiang, ZHANG Bin, CHENG Guxun, LI Zuohui. Dynamic Monitoring of Spartina alterniflora in Xiangshan Harbor Based on GEE and Random Forest [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 38-45. |
[5] | WANG Xiaohui, ZHANG Huiru, PANG Yong, QIN Xianlin, LI Haikui, MENG Shili, YU Tao. Forest Vegetation Type Monitoring in the Natural Forest Protection Project Area [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 96-103. |
[6] | GAO Jinping, YU Huina, ZHAI Zhaokun. Application of High Resolution Multi-Mode Satellite in Forest Land Types and Tree Species Identification [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 127-132. |
[7] | WANG Xiaoyang, JIANG Youyi, LI Xiao, HU Yaxuan, ZHANG Jiazheng, LIU Bowei. A Multi-Temporal and Multi-Feature Larch Plantation Extraction Study Based on GF-1 Images [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 109-118. |
[8] | HUANG Bingqian, YUE Cairong, ZHU Bodong. Estimation of Forest Volume Based on Multi-Scale Remote Sensing Features of GF-1 [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(3): 54-59. |
[9] | HUANG Jincheng, LIU Hongsheng, NING Jinkui, OUYANG Xunzhi, ZANG Hao. Study of Adaptability of the Primary Afforestation Species in Chongyi County,Jiangxi Province Based on Random Forest [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 117-125. |
[10] | YANG Dan, LI Chonggui, ZHANG Jiazheng. Research on Deep Learning Classification of Forest Types Based on Multi-temporal GF-1 Images [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 142-149. |
[11] | TANG Jinhao, ZHANG Jialong, CHEN Liye, CHENG Tao. Research on Estimation of Aboveground Biomass and Scale Conversion for Pinus densata Mast [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(6): 83-89. |
[12] | DU Zhi, CHEN Zhenxiong, MA Kaisen, LIU Ziwei, GU Xinggui. Estimating Standing Volume in Southern Collective Forest Region Based on the Unmanned Aerial Vehicle LiDAR Characteristic Variables [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(4): 157-165. |
[13] | XIAO Yue, XU Xiaodong, LONG Jiangping, LIN Hui. Research on Inversion of Forest Volume Based on Domestic High-Resolution Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 101-107. |
[14] | LIN Shuangshuang, ZHONG Jiusheng, HE Xin, JIANG Li, DUAN Jiwei, DAI Renli, HE Zhiyuan. Extraction Method of Urban Forest Land Information Based on Spectral Information [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(3): 96-100. |
[15] | LI Bin, LI Chonggui, LI Yu. Research on Larch Extraction in Saihanba Mechanical Forest Farm Based on Sentinel-2 Data [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 117-123. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 424
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||