FOREST RESOURCES WANAGEMENT ›› 2022›› Issue (4): 54-60.doi: 10.13466/j.cnki.lyzygl.2022.04.008
• Scientific Research • Previous Articles Next Articles
LI Kangjie1(), HU Zhongyue2, LIU Ping1, XU Zhengchun1()
Received:
2022-04-29
Revised:
2022-06-27
Online:
2022-08-28
Published:
2022-10-13
Contact:
XU Zhengchun
E-mail:2284817737@qq.com;zcxu@scau.edu.cn
CLC Number:
LI Kangjie, HU Zhongyue, LIU Ping, XU Zhengchun. Evaluation on Forest Biomass and Carbon Storage in Pearl River Delta in Guangdong Province[J]. FOREST RESOURCES WANAGEMENT, 2022, (4): 54-60.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2022.04.008
Tab.1
Parameter values of aboveground biomass model
树种 | 模型公式 | a | b | 参考文献 |
---|---|---|---|---|
马尾松Pinus massoniana | 0.099488 | 2.40859 | 国家林业局[ | |
湿地松Pinus elliottii | 0.08389 | 2.44091 | 国家林业局[ | |
杉木Cunninghamia lanceolata | M=a×Db | 0.07637 | 2.40393 | 国家林业局[ |
木荷Schima superba | 0.17685 | 2.26314 | 国家林业局[ | |
枫香Liquidambar formosana | 0.10615 | 2.4665 | 国家林业局[ | |
栎类Quercus | 0.2316 | 2.30416 | 国家林业局[ |
Tab.2
Mean wood basic density and parameter values of the general one-variable aboveground biomass model for all tree species or groups
树种(组) | 生物量模型 参数(a) | 木材密度 (p) | 树种(组) | 生物量模型 参数(a) | 木材密度 (p) |
---|---|---|---|---|---|
桉树Eucalyptus | 0.1746 | 0.5820 | 其他松 | 0.1351 | 0.450 |
相思Acacia confusa | 0.1875 | 0.625 | 油杉Keteleeria fortunei | 0.1182 | 0.394 |
檫木Sassafras tzumu | 0.1380 | 0.460 | 樟树Cinnamomum camphora | 0.1380 | 0.460 |
黄柏Cupressus | 0.1792 | 0.5970 | 泡桐Paulownia | 0.0711 | 0.237 |
楝树Melia azedarach | 0.1329 | 0.443 | 其他软阔 | 0.1329 | 0.443 |
木麻黄Casuarinaceae | 0.1329 | 0.443 | 其他硬阔 | 0.1875 | 0.625 |
楠木Phoebe zhennan | 0.1380 | 0.460 | 铁杉Tsuga | 0.1326 | 0.442 |
Tab.3
Carbon content of each stand weighted by biomass
树种(组) | 含碳量/% | 树种(组) | 含碳量/% |
---|---|---|---|
马尾松Pinus massoniana | 52.71 | 木荷Schima superba | 47.27 |
湿地松Pinus elliottii | 53.11 | 相思Acacia confusa | 46.66 |
杉木Cunninghamia lanceolata | 51.27 | 栎类Quercus | 47.98 |
针阔混 | 48.93 | 楠木Phoebe zhennan | 50.02 |
阔叶混 | 47.96 | 樟树Cinnamomum camphora | 49.16 |
针叶混 | 51.68 | 其他硬阔 | 49.01 |
桉树Eucalyptus | 47.48 | 其他软阔 | 45.02 |
Tab.6
Biomass and carbon storage of arbor forest on dominant tree species
优势树种 | 生物量/ t | 单位面积 生物量/ (t/hm2) | 碳储量/ t | 碳密度/ (t/hm2) |
---|---|---|---|---|
桉树Eucalyptus | 250.00 | 48.05 | 118.70 | 22.82 |
栎类Quercus | 42.98 | 92.05 | 20.62 | 44.17 |
马尾松Pinus massoniana | 76.71 | 71.88 | 40.44 | 37.89 |
木荷Schima superba | 51.82 | 64.74 | 24.50 | 30.60 |
楠木Phoebe zhennan | 15.50 | 58.09 | 7.78 | 29.16 |
杉木Cunninghamia lanceolata | 67.81 | 53.51 | 34.77 | 27.43 |
湿地松Pinus elliottii | 48.74 | 56.22 | 25.89 | 29.86 |
相思Acacia confusa | 32.22 | 69.00 | 15.03 | 32.20 |
樟木Cinnamomum camphora | 0.68 | 10.27 | 0.34 | 5.05 |
其他硬阔类 | 4.53 | 33.98 | 2.22 | 16.66 |
其它软阔类 | 23.03 | 69.05 | 10.37 | 31.09 |
阔叶混交林 | 532.54 | 68.24 | 255.41 | 32.73 |
针叶混交林 | 61.27 | 65.61 | 31.66 | 33.91 |
针阔混交林 | 162.62 | 62.51 | 79.57 | 30.59 |
Tab.7
Biomass and carbon density of arbor forest on age groups and dominant tree species
优势树种 | 单位面积生物量/(t/hm2) | 碳密度/(t/hm2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
幼龄林 | 中龄林 | 近熟林 | 成熟林 | 过熟林 | 幼龄林 | 中龄林 | 近熟林 | 成熟林 | 过熟林 | |||
桉树Eucalyptus | 38.34 | 53.97 | 55.56 | 78.27 | 18.20 | 25.62 | 26.38 | 37.16 | ||||
栎类Quercus | 61.00 | 169.69 | 29.27 | 81.42 | ||||||||
马尾松Pinus massoniana | 27.78 | 74.25 | 68.61 | 90.90 | 14.64 | 39.14 | 36.16 | 47.92 | ||||
木荷Schima superba | 55.45 | 33.77 | 109.25 | 102.74 | 26.21 | 15.96 | 51.64 | 48.57 | ||||
楠木Phoebe zhennan | 32.22 | 118.61 | 49.32 | 16.17 | 59.54 | 24.76 | ||||||
杉木Cunninghamia lanceolata | 51.75 | 61.20 | 59.92 | 50.21 | 26.53 | 31.38 | 30.72 | 25.75 | ||||
湿地松Pinus elliottii | 26.49 | 32.07 | 68.66 | 58.91 | 75.61 | 14.07 | 17.03 | 36.47 | 31.29 | 40.15 | ||
相思Acacia confusa | 49.38 | 95.16 | 23.04 | 44.40 | ||||||||
樟木Cinnamomum camphora | 10.27 | 5.05 | ||||||||||
其他硬阔类 | 33.98 | 16.66 | ||||||||||
其它软阔类 | 21.65 | 97.30 | 31.72 | 9.75 | 43.80 | 14.28 | ||||||
阔叶混交林 | 56.72 | 81.76 | 99.46 | 89.39 | 50.45 | 27.20 | 39.21 | 47.70 | 42.87 | 24.19 | ||
针叶混交林 | 9.67 | 75.71 | 72.60 | 5.00 | 39.13 | 37.52 | ||||||
针阔混交林 | 45.98 | 66.59 | 73.60 | 134.25 | 22.5 | 32.58 | 36.01 | 65.69 |
Tab.8
Biomass and carbon storage of arbor forest on cities
县市 | 生物量占 总量/% | 单位面积生物量/ (t/hm2) | 碳储量占 总量/% | 碳密度/ (t/hm2) |
---|---|---|---|---|
东莞市 | 1.50 | 102.92 | 1.47 | 48.98 |
佛山市 | 2.62 | 59.82 | 2.67 | 29.68 |
广州市 | 13.83 | 88.82 | 13.69 | 42.79 |
惠州市 | 26.51 | 59.85 | 26.42 | 29.05 |
江门市 | 12.46 | 56.91 | 12.61 | 28.03 |
深圳市 | 2.66 | 68.39 | 2.60 | 32.49 |
肇庆市 | 38.31 | 55.83 | 38.45 | 27.28 |
中山市 | 1.79 | 122.87 | 1.77 | 59.17 |
珠海市 | 0.30 | 31.16 | 0.32 | 16.26 |
Tab.9
Biomass and carbon storage of arbor forest on age groups and cities
县市 | 生物量比例/% | 碳储量比例/% | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
幼龄林 | 中龄林 | 近熟林 | 成熟林 | 过熟林 | 幼龄林 | 中龄林 | 近熟林 | 成熟林 | 过熟林 | ||||||
东莞市 | 32.11 | 33.28 | 34.61 | 33.01 | 33.05 | 33.94 | |||||||||
佛山市 | 6.70 | 38.31 | 55.00 | 6.47 | 37.71 | 55.82 | |||||||||
广州市 | 37.68 | 26.91 | 21.36 | 3.54 | 10.51 | 37.61 | 26.18 | 21.31 | 3.87 | 11.02 | |||||
惠州市 | 44.61 | 38.85 | 7.23 | 9.31 | 44.45 | 38.76 | 7.43 | 9.37 | |||||||
江门市 | 33.55 | 27.45 | 21.44 | 13.40 | 4.16 | 33.50 | 27.05 | 21.80 | 13.45 | 4.20 | |||||
深圳市 | 60.17 | 39.83 | 60.49 | 39.51 | |||||||||||
肇庆市 | 36.23 | 37.70 | 17.58 | 6.57 | 1.92 | 35.79 | 37.73 | 17.64 | 6.95 | 1.89 | |||||
中山市 | 23.94 | 20.70 | 55.35 | 23.84 | 21.03 | 55.12 | |||||||||
珠海市 | 100.00 | 100.00 |
[1] | 杨青川. 利用森林蓄积量生物量模型估算岫岩县森林碳储量[J]. 绿色科技, 2021, 23(8):20-22. |
[2] | 孙忠秋, 吴发云, 胡杨, 等. 基于Landsat-8 OLI数据的马尾松林蓄积量饱和点确定及估测[J]. 林业资源管理, 2020(6):135-142. |
[3] | 刘魏魏, 王效科, 逯非, 等. 全球森林生态系统碳储量、固碳能力估算及其区域特征[J]. 应用生态学报, 2015, 26(9):2881-2890. |
[4] | 马泽清, 刘琪璟, 徐雯佳, 等. 基于TM遥感影像的湿地松林生物量研究[J]. 自然资源学报, 2008(3):467-478. |
[5] | 庞勇, 黄克标, 李增元, 等. 基于遥感的湄公河次区域森林地上生物量分析[J]. 资源科学, 2011, 33(10):1863-1869. |
[6] | 程丽芬. 山西霍山森林群落生物量与碳密度研究[J]. 林业资源管理, 2017(1):70-74. |
[7] | 沈希, 张茂震, 祁祥斌. 基于回归与随机模拟的区域森林碳分布估计方法比较[J]. 林业科学, 2011, 47(6):1-8. |
[8] | 刘浩然, 范伟伟, 徐永胜, 等. 基于无人机激光雷达点云的单木生物量估测[J]. 中南林业科技大学学报, 2021, 41(8):92-99. |
[9] | 吴恒, 胥辉. 四川省主要乔木林类型碳汇速率及储量动态分析[J]. 林业资源管理, 2021(5):47-55. |
[10] | 潘婧靓, 邢艳秋, 黄佳鹏, 等. 联合GF-3 PolSAR数据与Landsat-8 OLI数据的森林地上生物量估测[J]. 中南林业科技大学学报, 2020, 40(8):83-90. |
[11] |
Du Ling, Zhou Tao, Zou Zhenhua, et al. Mapping forest biomass using remote sensing and national forest inventory in China[J]. Forests, 2014, 5(6):1267-1283.
doi: 10.3390/f5061267 |
[12] |
Hudak A T, Stand E K, Vierling L A, et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys[J]. Remote Sensing of Environment, 2012, 123:25-40.
doi: 10.1016/j.rse.2012.02.023 |
[13] | 刘萍, 邓鉴锋, 魏安世, 等. 广州市森林生物量及碳储量评估[J]. 西南林业大学学报, 2015, 35(4):62-65. |
[14] | 左雪漫, 闫国东, 陈瑾, 等. 福建省林地覆盖变化及其海拔梯度效应的分析[J]. 林业资源管理, 2022(1):70-77. |
[15] | 国家林业局. LY/T 2263-2014,立木生物量模型及碳计量参数——马尾松[S]. 北京: 中国标准出版社, 2014. |
[16] | 国家林业局. LY/T 2261-2014,立木生物量模型及碳计量参数——湿地松[S]. 北京: 中国标准出版社, 2014. |
[17] | 国家林业局. LY/T 2264-2014,立木生物量模型及碳计量参数——杉木[S]. 北京: 中国标准出版社, 2014. |
[18] | 国家林业局. LY/T 2260-2016,立木生物量模型及碳计量参数——木荷[S]. 北京: 中国标准出版社, 2016. |
[19] | 国家林业局. LY/T 2261-2016,立木生物量模型及碳计量参数——枫香[S]. 北京: 中国标准出版社, 2016. |
[20] | 国家林业局. LY/T 2658-2016,立木生物量模型及碳计量参数——栎树[S]. 北京: 中国标准出版社, 2016. |
[21] | 曾伟生. 基于木材密度的34个树种组一元立木生物量模型建立[J]. 林业资源管理, 2017(6):41-46. |
[22] | 王念奎. 福建省乔木林碳储量估算及变化动态分析[J]. 林业勘察设计, 2017, 37(2):40-45. |
[23] | 林玮, 梁东成, 唐昌亮, 等. 华南地区主要造林树种林分碳储量估算[J]. 林业与环境科学, 2019, 35(2):20-29. |
[24] | 杨昆, 管东生. 珠江三角洲森林的生物量和生产力研究[J]. 生态环境, 2006(1):84-88. |
[25] |
Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190.
pmid: 17839174 |
[26] | 朱妍. 基于Landsat 8 OLI和ALOS-2 PALSAR-2数据的北京市森林生物量估测研究[D]. 北京: 北京林业大学, 2020. |
[1] | HAO Jun, LYU Kangting, HU Tianqi, WANG Yunge, XU Gang. Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning [J]. Forest and Grassland Resources Research, 2024, 0(1): 65-72. |
[2] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[3] | CAO Cong, GUO Zexin, GUO Yanqing, MO Yanqing, LIU Ping. Spatial Distribution of Forest Carbon Storage in the Pearl River Delta Based on Geographically Weighted Regression Model [J]. Forest and Grassland Resources Research, 2023, 0(6): 98-104. |
[4] | ZHANG Huifang, ZHU Yali, ZHANG Jinglu, GAO Jian, DILIXIATI·Baoerhan . Above-Ground Biomass Prediction of Arbor Forest in Altay Mountain Area Based on High-Resolution Remote Sensing Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 104-110. |
[5] | XIE Zhuohong, LIU Lijie, MO Yanqing, CHEN Chumin, MA Zhenhuan, LIU Ping. Evaluation and Optimization of Regional River System Forest Landscape Pattern in Forest Urban Agglomeration of Pearl River Delta [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 118-125. |
[6] | LAN Xiao, HAO Haikun, HUANG Kaiyong, CHEN Qin, DAI Jun, CHENG Lin, CHEN Shichang. Biomass Distribution Characteristics and Carbon Measurement Parameters of Chinese Fir Plantation [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 50-56. |
[7] | CAI Huide, LU Feng, XU Zhanyong, PAN Huangru, MENG Xiang, ZENG Weisheng. Research and Development of Compatible and Additive Individual Tree Biomass Model Systems for Eucalyptus [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 87-93. |
[8] | JIANG Jingjian, LI Zirui, NIU Mingyue, HU Weijiang, ZHANG Yong. Service Function Value Assessment of Carbon Sequestration and Oxygen Release of Forest Vegetation in the State-Owned Forest Farms of Zhejiang Province [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(zk1): 66-71. |
[9] | WANG Yu, CAI Nianhui, CHEN Lin, TANG Junrong, XU Yulan, CHEN Shi. Relationships Between Biomass Allocation Pattern and Plant Size of Pinus yunnanensis Seedling [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 101-108. |
[10] | ZHANG Min, WANG Jian, HAN Tianyi, OUYANG Xunzhi, PAN Ping, LIU Dongdong. Characteristics of Carbon Density and Its Influencing Factors of Pinus massoniana Forest Based on CBM-CFS3 Model [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 44-53. |
[11] | NIE Jing, LU Chi, OU Guanglong, XU Hui. Two-Stage Sampling Estimation of Above-Ground Biomass of Pinus kesiya var.langbianensis Based on Remote Sensing Factors from Landsat8 OLI [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 68-75. |
[12] | ZHU Yali, ZHANG Jinglu, ZHANG Huifang, DILIXIATI· Baoerhan, LIAN Jiajia. Biomass Analysis and Model Development of Caragana sinica in Central Tianshan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 129-135. |
[13] | ZENG Weisheng, YANG Xueyun, SUN Xiangnan, LIU Qiangyi, ZHANG Yuchao. A Study on Integration of Forest Stock Data at Different Levels in Forest Inventory and Monitoring [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 13-19. |
[14] | HU Zhongyu, SU Jianlan, LONG Qin, LI Maomei. Analysis on the Changing Tendency of Carbon Sequestration and Carbon Density of Natural Forests in Yunnan Province [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 45-53. |
[15] | ZHAO Chengle, MENG Gui, WU Shuirong, ZHANG Chao, LIU Yefei. Analysis on Policy Evolution andIndustry Development of Forestry Biomass Energy in China [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||