[1] |
Prieur J-F, St-Onge B, Fournier R A, et al. A comparison of three airborne laser scanner types for species identification of individual trees[J]. Sensors, 2022, 22(1):35-57.
doi: 10.3390/s22010035
|
[2] |
刘欢, 王玥, 艾明耀. 融合LiDAR点云与高分影像的单木检测方法研究[J]. 地理空间信息, 2021, 19(10):1-4.
|
[3] |
皋厦, 申鑫, 代劲松, 等. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J]. 遥感技术与应用, 2018, 33(6):1073-1083.
|
[4] |
张玥焜, 余文杰, 赵习之, 等. 基于机载激光雷达点云的交互式树木分割与建模方法研究[J]. 图学学报, 2021, 42(4):599-607.
|
[5] |
Gupta A, Byrne J, Moloney D, et al. Tree annotations in LiDAR data using point densities and convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(2):971-981.
doi: 10.1109/TGRS.2019.2942201
|
[6] |
C$\check{a}$eanu M, Ciubotaru A. The effect of LiDAR sampling density on DTM accuracy for areas with heavy forest cover[J]. Forests, 2021, 12(3):265-285.
doi: 10.3390/f12030265
|
[7] |
赵沛冉, 管海燕, 李迪龙, 等. 利用样本生成方法进行机载多光谱LiDAR数据深度学习分类[J]. 测绘通报, 2021, 12(12):16-21.
|
[8] |
You Hangkai, Li Shihua, Xu Yifan, et al. Tree extraction from airborne laser scanning data in urban areas[J]. Remote Sensing, 2021, 13(17):3428-3446.
doi: 10.3390/rs13173428
|
[9] |
谷志新, 裴方睿. 基于多层K-means在森林点云中的单木识别算法[J]. 林业资源管理, 2022(1):124-131.
|
[10] |
Michałowska M, Rapiński J. A review of tree species classification based on airborne LiDAR data and applied classifiers[J]. Remote Sensing, 2021, 13(3):353-379.
doi: 10.3390/rs13030353
|
[11] |
Puliti S, Breidenbach J, Astrup R. Estimation of forest growing stock volume with UAV laser scanning data:can it be done without field data?[J]. Remote Sensing, 2020, 12(8):1245-1264.
doi: 10.3390/rs12081245
|
[12] |
熊艳, 高仁强, 徐战亚. 机载LiDAR点云数据降维与分类的随机森林方法[J]. 测绘学报, 2018, 47(4):508-518.
|
[13] |
Pvd A, Dha B. Risk assessment concerning urban ecosystem disservices:The example of street trees in Berlin,Germany[J]. Ecosystem Services, 2019, 40(10):31-44.
|
[14] |
宋婷. 城市行道树健康检测评价及应急管理体系构建[D]. 上海: 上海应用技术大学, 2021.
|
[15] |
贾益兴, 雷杰, 黄颂谊. 广州市环市路行道树树木安全风险评价与管理探析[J]. 广东园林, 2021, 43(4):93-96.
|
[16] |
陈文静, 曹雨秋, 张慧会, 等. 法桐行道树生长健康评价——以南京市热河路为例[J]. 中南林业科技大学学报, 2022(8):176-190.
|
[17] |
宋平. 基于VTA-风险矩阵法的上海市行道树安全风险评价研究[D]. 上海: 上海应用技术大学, 2021.
|
[18] |
吴悠绿, 肖鹏峰, 刘豪, 等. 基于因子分析法与k-means聚类的行道树安全风险评价[J/OL]. 西南林业大学学报:自然科学,(2022-05-17)[2022-07-28].http://kns.cnki.net/kcms/detail/53.1218.s.20220517.1015.004.html.
|
[19] |
李永强, 李鹏鹏, 董亚涵, 等. 车载LiDAR点云数据中杆状地物自动提取与分类[J]. 测绘学报, 2020, 49(6):724-735.
|
[20] |
邢旭东, 吕现福, 王旭东, 等. 一种基于分层自适应移动曲面拟合机载LiDAR点云数据滤波方法[J]. 测绘与空间地理信息, 2016, 39(1):128-130.
|
[21] |
张小红. 机载激光雷达测量技术理论与方法[M]. 武汉: 武汉大学出版社, 2007.
|
[22] |
Zhu Xiaoxiao, Wang Cheng, XI Xiaohuan, et al. Hierarchical threshold adaptive for point cloud filter algorithm of moving surface fitting[J]. Acta Geodaetica et CartographicaSinica, 2018, 47(2):153-160.
|
[23] |
Li Shanshan. An improved DBSCAN algorithm based on the neighbor similarity and fast nearest neighbor query[J]. IEEE Access, 2020, 8(3):47468-47476.
doi: 10.1109/ACCESS.2020.2972034
|
[24] |
Roberto Ferrara, Salvatore G. P.Virdis, Andrea Ventura, et al. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN[J]. Agricultural and Forest Meteorology, 2018, 16(5):434-444.
|
[25] |
Latella M, Sola F, Camporeale C. A density-based algorithm for the detection of individual trees from LiDAR data[J]. Remote Sensing, 2021, 13(2):322-344.
doi: 10.3390/rs13020322
|
[26] |
董亚涵, 李永强, 李鹏鹏, 等. 基于车载LiDAR点云的杆状地物分类研究[J]. 测绘工程, 2019, 28(6):58-63.
|
[27] |
Ana PaulaCoelho-Duarte, Gustavo Daniluk-Mosquera, Virginia Gravina, et al. Tree risk assessment:component analysis of six visual methods applied in an urban park,Montevideo,Uruguay[J]. Urban Forestry & Urban Greening, 2021, 59(2):70-79.
|
[28] |
宋婷, 贺坤, 王本耀, 等. 一种行道树健康状况评价方法及系统:中国,CN111639877A[P]. 2020-09-08.
|
[29] |
贺坤, 宋平, 王本耀, 等. 上海城市行道树安全风险评价研究[J]. 中国园林, 2021, 37(9):106-111.
|