FOREST RESOURCES WANAGEMENT ›› 2022›› Issue (5): 107-117.doi: 10.13466/j.cnki.lyzygl.2022.05.014
• Technical Application • Previous Articles Next Articles
WANG Bu1,2(), TAN Wei1,2(), WANG Guilin1,2, PU Xiuqing1,2
Received:
2022-08-09
Revised:
2022-10-26
Online:
2022-10-28
Published:
2022-12-23
Contact:
TAN Wei
E-mail:wangbu2022@163.com;wtan@gzu.edu.cn
CLC Number:
WANG Bu, TAN Wei, WANG Guilin, PU Xiuqing. Tree Level Monitoring of Pine Wilt Disease Based on UAV Multispectral Imagery[J]. FOREST RESOURCES WANAGEMENT, 2022, (5): 107-117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2022.05.014
Tab.1
Vegetation indices selected in this study
植被指数 | 公式 | 参考文献 |
---|---|---|
大气阻抗植被指数(ARVI) | [ | |
大气阻抗植被指数(ARVI2) | [ | |
叶绿素植被指数(CVI) | [ | |
差值植被指数(DVI) | [ | |
增强植被指数(EVI) | [ | |
增强植被指数(EVI2) | [ | |
增强植被指数(EVI2-2) | [ | |
绿色抗大气植被指数(GARI) | [ | |
蓝绿色归一化植被指数(GBNDVI) | [ | |
近红-绿差值植被指数(GDVI) | [ | |
绿色归一化植被指数(GNDVI) | [ | |
绿红色归一化植被指数(GRNDVI) | [ | |
改进型土壤调整植被指数(MSAVI) | [ | |
归一化植被指数(NDVI) | [ | |
红边归一化植被指数(NDRE) | [ | |
优化土壤调整植被指数(OSAVI) | [ | |
全色归一化植被指数(PNDVI) | [ | |
红绿归一化植被指数(RBNDVI) | [ | |
比值植被指数(RVI) | [ | |
宽动态范围植被指数(WDRVI) | [ |
Tab.2
Accuracy assessment for the detection of individual trees
研究区 | 样地 | 实际株数 | 正检 (TP)/株 | 误检 (FP)/株 | 漏检 (FN)/株 | 召回率 (r)/% | 准确率 (p)/% | F得分 (F-score)/% |
---|---|---|---|---|---|---|---|---|
A1 | P1 | 290 | 236 | 63 | 54 | 81.38 | 78.93 | 80.14 |
P2 | 302 | 243 | 58 | 59 | 80.46 | 80.73 | 80.60 | |
A2 | P3 | 171 | 147 | 32 | 24 | 85.96 | 82.12 | 84.00 |
P4 | 192 | 158 | 42 | 34 | 82.29 | 79.00 | 80.61 | |
A3 | P5 | 102 | 91 | 15 | 11 | 89.22 | 85.85 | 87.50 |
P6 | 126 | 109 | 17 | 17 | 86.51 | 86.51 | 86.51 | |
统计 | 1183 | 984 | 227 | 199 | 83.18 | 81.26 | 82.21 |
Tab.4
Accuracy evaluation of PWD classification based on RF and SVM models
模型 | 类别 | 生产者精度 (PA)/% | 用户精度 (UA)/% | F-得分 (F-score)/% | 总体精度 (OA)/% | Kappa | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | 健康 | 83.33 | 74.07 | 78.43 | 84.40 | 0.74 | ||||||
早期 | 62.07 | 78.26 | 69.23 | |||||||||
中期 | 89.29 | 78.13 | 83.33 | |||||||||
晚期 | 93.33 | 94.92 | 94.12 | |||||||||
SVM | 健康 | 85.19 | 76.67 | 80.70 | 76.09 | 0.66 | ||||||
早期 | 48.00 | 66.67 | 55.81 | |||||||||
中期 | 83.33 | 60.60 | 70.18 | |||||||||
晚期 | 80.65 | 87.72 | 84.03 |
[1] |
Lee K S, Kim D. Global dynamics of a pine wilt disease transmission model with nonlinear incidence rates[J]. Applied Mathematical Modelling, 2013, 37(6):4561-4569.
doi: 10.1016/j.apm.2012.09.042 |
[2] | Manuel M M. Pine Wilt Disease:A Worldwide Threat to Forest Ecosystems[M]. Springer,Dordrecht: 2008. |
[3] | 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10. |
[4] |
Syifa M, Park S J, Lee C W. Detection of the pine wilt disease tree candidates for drone remote sensing using artificial intelligence techniques[J]. Engineering, 2020, 6(8):919-926.
doi: 10.1016/j.eng.2020.07.001 |
[5] | 张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20):1-11. |
[6] | 任艳中, 王弟, 李轶涛, 等. 无人机遥感在森林资源监测中的应用研究进展[J]. 中国农学通报, 2020, 36(8):111-118. |
[7] |
Iordache M D, Mantas V, Baltazar E, et al. A machine learning approach to detecting pine wilt disease using airborne spectral imagery[J]. Remote Sensing, 2020, 12(14):2280.
doi: 10.3390/rs12142280 |
[8] |
Dash J P, Watt M S, Pearse G D, et al. Assessing very high-resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:1-14.
doi: 10.1016/j.isprsjprs.2017.07.007 |
[9] | 赵晋陵, 金玉, 叶回春, 等. 基于无人机多光谱影像的槟榔黄化病遥感监测[J]. 农业工程学报, 2020, 36(8):54-61. |
[10] |
Jaafar W S W M, Woodhouse I H, Silva C A, et al. Improving individual tree crown delineation and attributes estimation of tropical forests using airborne LiDAR data[J]. Forests, 2018, 9(12):759.
doi: 10.3390/f9120759 |
[11] |
Yu Run, Luo Youqing, Zhou Quan, et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101(1):102363
doi: 10.1016/j.jag.2021.102363 |
[12] |
Navarro J A, Algeet N, Fernández-Landa A, et al. Integration of UAV, Sentinel-1,and Sentinel-2 data for mangrove plantationaboveground biomass monitoring in Senegal[J]. Remote Sensing, 2019, 11(1):77.
doi: 10.3390/rs11010077 |
[13] |
Ok A O, Ozdarici-Ok A. 2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models[J]. International Journal of Digital Earth, 2018, 11(6):583-608.
doi: 10.1080/17538947.2017.1337820 |
[14] |
Nevalainen O, Honkavaara E, Tuominen S, et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sensing, 2017, 9(3):185.
doi: 10.3390/rs9030185 |
[15] |
Luís P, Pedro M, Luís M, et al. Monitoring of chestnut trees using machine learning techniques applied to UAV-Based multispectral data[J]. Remote Sensing, 2020, 12(18):3032.
doi: 10.3390/rs12183032 |
[16] |
Minařík, Langhammer J,Lendzioch T. Detection of bark beetle disturbance at tree level using UAS multispectral imagery and deep learning[J]. Remote Sensing, 2021, 13(23):4768.
doi: 10.3390/rs13234768 |
[17] |
Cardil A, Otsu K, Pla M, et al. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery.[J]. PLoS ONE, 2019, 14(3):e0213027-e0213027.
doi: 10.1371/journal.pone.0213027 |
[18] | Minařík, Langhammer J,Lendzioch T. Automatic Tree Crown Extraction from UAS Multispectral Imagery for the Detection of Bark Beetle Disturbance in Mixed Forests[J]. Remote Sensing, 2020, 24(12):4081. |
[19] | 徐华潮, 骆有庆, 张廷廷, 等. 松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J]. 光谱学与光谱分析, 2011, 31(5):1352-1356. |
[20] |
Santos CSS, Vasconcelos MW. Identification of genes differentially expressed in Pinus pinaster and Pinus pinea after infection with the pine wood nematode[J]. EUR J PLANT PATHOL, 2012, 132(3):407-418.
doi: 10.1007/s10658-011-9886-z |
[21] | Li Wenkai, Guo Qinghua, Jakubowski M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(1):75-84. |
[22] |
Lu Xingcheng, Guo Qinghua, Li Wenkai, et al. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data[J]. ISPRS Journal of Photogrammetry and Remote sensing, 2014, 94:1-12.
doi: 10.1016/j.isprsjprs.2014.03.014 |
[23] |
Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sensing of Environment, 1996, 58(3):289-298.
doi: 10.1016/S0034-4257(96)00072-7 |
[24] | Vincini M, Frazzi E, D’Alessio P, et al. A broad-band leaf chlorophyll vegetation index at the canopy scale[J]. PrecisionAgriculture, 2008, 9(5):303-319. |
[25] |
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
doi: 10.2307/1936256 |
[26] |
Ahamed T, Tian L, Zhang Y, et al. A review of remote sensing methods for biomass feedstock production[J]. Biomass and bioenergy, 2011, 35(7):2455-2469.
doi: 10.1016/j.biombioe.2011.02.028 |
[27] |
Miura T, Yoshioka H, Fujiwara K, et al. Inter-comparison of ASTER and MODIS surface reflectance and vegetation index products for synergistic applications to natural resource monitoring[J]. Sensors, 2008, 8(4):2480-2499.
pmid: 27879830 |
[28] |
Jiang Z, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote sensing of Environment, 2008, 112(10):3833-3845.
doi: 10.1016/j.rse.2008.06.006 |
[29] | Wang Fumin, Huang Jingfeng, Tang Yanlin, et al. New vegetation index and its application in estimating leaf area index of rice[J]. Rice Science, 2007, 14(3):195-203. |
[30] |
Tucker C J, Elgin Jr J H, McMurtreyIii J E, et al. Monitoring corn and soybean crop development with hand-held radiometer spectral data[J]. Remote Sensing of Environment, 1979, 8(3):237-248.
doi: 10.1016/0034-4257(79)90004-X |
[31] |
Qi J G, Chehbouni A R, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2):119-126.
doi: 10.1016/0034-4257(94)90134-1 |
[32] |
Fitzgerald G J, Rodriguez D, Christensen L K, et al. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments[J]. Precision Agriculture, 2006, 7(4):233-248.
doi: 10.1007/s11119-006-9011-z |
[33] |
Steven M D. The sensitivity of the OSAVI vegetation index to observational parameters[J]. Remote Sensing of Environment, 1998, 63(1):49-60.
doi: 10.1016/S0034-4257(97)00114-4 |
[34] |
Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of plant physiology, 2004, 161(2):165-173.
pmid: 15022830 |
[35] | 刘笑笑, 王亮, 徐胜华, 等. 一种后向迭代的森林生物量遥感特征选择方法[J]. 测绘科学, 2017, 42(5):100-105. |
[36] |
Breiman L. Random forests[J]. Machine learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 |
[37] | VapnikV. The nature of statistical learning theory[M]. New York: Springer Verlag, 1995:25-27. |
[38] | Snoek J, Larochelle H, Adams R P. Practical Bayesian optimization of machine learning algorithms[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 2.(2012-08-29)[2022-08-07].http://arXiv.org/abs/1206.2944. |
[39] |
Windrim L, Carnegie A J, Webster M, et al. Tree detection and health monitoring in multispectral aerial imagery and photogrammetric pointclouds using machine learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:2554-2572.
doi: 10.1109/JSTARS.2020.2995391 |
[40] | 金玉. 槟榔黄化病多源遥感数据监测研究[D]. 合肥: 安徽大学, 2020. |
[41] |
Xu Zhong, Shen Xin, Cao Lin, et al. Tree species classification using UAS-based digital aerial photogrammetry point clouds and multispectral imageries in subtropical natural forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102173
doi: 10.1016/j.jag.2020.102173 |
[42] |
Guerra-Hernández J, Cosenza D N, Rodriguez L C E, et al. Comparison of ALS-and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations[J]. International Journal of Remote Sensing, 2018, 39(15/16):5211-5235.
doi: 10.1080/01431161.2018.1486519 |
[43] | 刘见礼, 张志玉, 倪文俭, 等. 无人机影像匹配点云单木识别算法[J]. 遥感信息, 2019, 34(1):93-101. |
[44] | 曾健, 张晓丽, 周雪梅, 等. 倾斜摄影测量技术提取落叶松人工林地形信息[J]. 北京林业大学学报, 2019, 41(8):1-12. |
[45] | 刘家福, 李林峰, 任春颖, 等. 基于特征优选的随机森林模型的黄河口滨海湿地信息提取研究[J]. 湿地科学, 2018, 16(2):97-105. |
[46] |
刘文雅, 潘洁. 基于神经网络的马尾松叶绿素含量高光谱估算模型[J]. 应用生态学报, 2017, 28(4):1128-1136.
doi: 10.13287/j.1001-9332.201704.035 |
[47] |
Yu Run, Luo Youqing, Zhou Quan, et al., et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
doi: 10.1016/j.foreco.2021.119493 |
[1] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[2] | QIN Lin, MENG Xianjin, ZHANG Shuihua, XUE Yadong, LIU Xinke, Xing Peng. Application Evaluation of BJ3 Satellite Data in Remote Sensing Monitoring of Pine Wilt Disease [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 126-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||