FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (1): 87-93.doi: 10.13466/j.cnki.lyzygl.2023.01.011
• Scientific Research • Previous Articles Next Articles
CAI Huide1(), LU Feng1, XU Zhanyong1, PAN Huangru1, MENG Xiang1, ZENG Weisheng2()
Received:
2022-12-09
Revised:
2023-01-30
Online:
2023-02-28
Published:
2023-05-05
CLC Number:
CAI Huide, LU Feng, XU Zhanyong, PAN Huangru, MENG Xiang, ZENG Weisheng. Research and Development of Compatible and Additive Individual Tree Biomass Model Systems for Eucalyptus[J]. FOREST RESOURCES WANAGEMENT, 2023, (1): 87-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.01.011
Tab.1
Statistics of individual tree biomass samples of Eucalyptus spp
变量 | 平均值 | 最小值 | 最大值 | 标准差 | 变动系数 |
---|---|---|---|---|---|
胸径(D)/cm | 13.1 | 1.0 | 33.6 | 7.0 | 53.44 |
树高(H)/m | 17.1 | 2.1 | 35.5 | 8.1 | 47.56 |
材积(V)/dm3 | 185.02 | 0.20 | 1438.50 | 227.25 | 122.83 |
地上生物量(Ma)/kg | 109.44 | 0.18 | 874.54 | 134.68 | 123.07 |
干材生物量(M1)/kg | 85.90 | 0.09 | 742.59 | 110.28 | 128.39 |
干皮生物量(M2)/kg | 7.93 | 0.01 | 35.11 | 7.74 | 97.54 |
树枝生物量(M3)/kg | 11.22 | 0.05 | 90.54 | 16.59 | 147.82 |
树叶生物量(M4)/kg | 4.38 | 0.03 | 18.71 | 4.39 | 100.17 |
地下生物量(Mb)/kg | 18.22 | 0.04 | 152.15 | 25.10 | 137.76 |
转换因子(BCF)/(kg/dm3) | 0.6609 | 0.3640 | 2.0294 | 0.2158 | 32.65 |
根茎比(RSR) | 0.1927 | 0.0111 | 0.4433 | 0.0731 | 37.95 |
Tab.2
Parameter estimates of one-and two-variables biomass model systems
参数 | 参数估计值 | |
---|---|---|
一元模型 | 二元模型 | |
a0 | 0.12576 | 0.082784 |
a1 | 2.46209 | 2.08311 |
a2 | / | 0.48997 |
b0 | 0.020214 | 0.028715 |
b1 | 2.54746 | 3.12276 |
b2 | / | -0.64399 |
c0 | 0.10040 | 0.060351 |
c1 | 2.72924 | 2.04583 |
c2 | / | 0.79805 |
f0 | 0.46836 | 1.0278 |
f1 | -0.53619 | 0.40837 |
f2 | / | -1.1350 |
g0 | 0.55316 | 1.6723 |
g1 | -0.49669 | 1.5980 |
g2 | / | -2.3324 |
h0 | 1.5953 | 3.7115 |
h1 | -1.1759 | 0.37261 |
h2 | / | -1.7196 |
Tab.3
Statistics of one-and two-variables biomass model systems
模型系统 | 检验方法 | 统计指标 | 目标变量 | ||||||
---|---|---|---|---|---|---|---|---|---|
Ma | Mb | V | M1 | M2 | M3 | M4 | |||
一元模型 | 自检 | R2 | 0.975 | 0.955 | 0.951 | 0.959 | 0.934 | 0.720 | 0.588 |
SEE | 21.29 | 5.39 | 50.53 | 22.47 | 2.00 | 8.83 | 2.83 | ||
MPE/% | 2.84 | 5.25 | 3.98 | 3.81 | 3.68 | 11.48 | 9.42 | ||
TRE/% | 1.98 | 0.94 | -2.77 | 2.09 | -1.78 | 4.82 | -0.07 | ||
5折交叉检验 | R2 | 0.974 | 0.953 | 0.951 | 0.958 | 0.933 | 0.720 | 0.589 | |
SEE | 21.69 | 5.49 | 50.55 | 22.85 | 2.01 | 8.83 | 3.44 | ||
MPE/% | 2.89 | 5.36 | 3.98 | 3.88 | 3.70 | 11.47 | 11.47 | ||
TRE/% | 1.95 | 0.75 | -2.88 | 2.02 | -1.80 | 4.92 | 0.15 | ||
二元模型 | 自检 | R2 | 0.978 | 0.958 | 0.992 | 0.972 | 0.927 | 0.831 | 0.585 |
SEE | 19.97 | 5.18 | 21.03 | 18.76 | 2.11 | 6.89 | 2.85 | ||
MPE/% | 2.66 | 5.05 | 1.66 | 3.18 | 3.87 | 8.95 | 9.49 | ||
TRE/% | 1.31 | -0.20 | -1.42 | 1.04 | -2.30 | 6.55 | 0.58 | ||
5折交叉检验 | R2 | 0.977 | 0.954 | 0.991 | 0.970 | 0.925 | 0.838 | 0.585 | |
SEE | 20.42 | 5.43 | 21.24 | 19.35 | 2.14 | 6.73 | 2.85 | ||
MPE/% | 2.72 | 5.30 | 1.67 | 3.28 | 3.93 | 8.75 | 9.49 | ||
TRE/% | 1.37 | -0.74 | -1.45 | 1.15 | -2.32 | 6.41 | 0.39 |
Tab.4
Comparison of estimated errors of published tree biomass models for Eucalyptus spp
模型 | 目标变量 | 结构式 | 相对误差/% |
---|---|---|---|
1 | 地上生物量 地下生物量 | Ma=0.1746D2.333 Mb=0.0599D2.16 | -7.04 -4.17 |
2 | 地上生物量 地下生物量 | Ma=0.05884D2.301H0.3521 Mb=0.005656(D2H)0.939 | -13.38 -24.79 |
3 | 地上生物量 地下生物量 | Ma=0.044D1.891H1.014/(1+0.027D-0.552H1.353) Mb=0.044D1.891H1.014/[1+1/(0.027D-0.552H1.353)] | 12.37 114.56 |
[1] | 全国森林资源统计(1984—1988)[R]. 北京: 中华人民共和国林业部,1989. |
[2] | 国家林业局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社.2019. |
[3] | 谢耀坚. 我国木材安全形势分析及桉树的贡献[J]. 桉树科技, 2018(4):3-6. |
[4] | LY/T 2260—2014,立木生物量模型及碳计量参数——油松[S]. |
[5] | LY/T 2261—2014,立木生物量模型及碳计量参数——湿地松[S]. |
[6] | LY/T 2262—2014,立木生物量模型及碳计量参数——云南松[S]. |
[7] | LY/T 2263—2014,立木生物量模型及碳计量参数——马尾松[S]. |
[8] | LY/T 2264—2014,立木生物量模型及碳计量参数——杉木[S]. |
[9] | LY/T 2654—2016,立木生物量模型及碳计量参数——落叶松[S]. |
[10] | LY/T 2656—2016,立木生物量模型及碳计量参数——冷杉[S]. |
[11] | LY/T 2655—2016,立木生物量模型及碳计量参数——云杉[S]. |
[12] | LY/T 2657—2016,立木生物量模型及碳计量参数——柳杉[S]. |
[13] | LY/T 2658—2016,立木生物量模型及碳计量参数——栎树[S]. |
[14] | LY/T 2659—2016,立木生物量模型及碳计量参数——桦树[S]. |
[15] | LY/T 2660—2016,立木生物量模型及碳计量参数——木荷[S]. |
[16] | LY/T 2661—2016,立木生物量模型及碳计量参数——枫香[S]. |
[17] | 竹万宽, 许宇星, 王志超, 等. 中国桉树人工林生物量估算系数及影响要素[J]. 林业科学, 2020, 56(5):1-11. |
[18] | 揭凡, 杜阿朋, 竹万宽. 桉树生物量估算模型及与IPCC法的对比分析[J]. 桉树科技, 2019(1):1-8. |
[19] | 陈宗铸, 陈毅青, 杨琦, 等. 海南岛桉树相容性生物量模型的研究[J]. 热带作物学报, 2018, 56(9):1868-1875. |
[20] | 曾伟生. 基于木材密度的34个树种组一元立木生物量模型建立[J]. 林业资源管理, 2017(6):33-38. |
[21] |
Zeng Weisheng, Zhang Lianjin, Chen Xinyun, et al. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China[J]. Canadian Journal of Forest Research, 2017, 47:467-475.
doi: 10.1139/cjfr-2016-0342 |
[22] | 马克西, 曾伟生, 李智华. 新疆云杉相容性立木生物量模型系统研建[J]. 林业科学研究, 2018, 31(6):105-113. |
[23] | LY/T 2258—2014,立木生物量建模方法技术规程[S]. |
[24] | LY/T 2259—2014,立木生物量建模样本采集技术规程[S]. |
[25] |
Zeng Weisheng, Tang Shouzheng. Modeling compatible single-tree aboveground biomass equations of Masson pine(Pinus massoniana)in southern China[J]. Journal of Forestry Research, 2012, 23(4):593-598.
doi: 10.1007/s11676-012-0299-4 |
[26] | 曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137-143. |
[27] | 曾伟生. 加权回归估计中不同权函数的对比分析[J]. 林业资源管理, 2013(5):55-61. |
[28] |
Zeng Weisheng, Zhang Huiru, Tang Shouzheng. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales—a case study for Masson pine(Pinus massoniana)in southern China[J]. Canadian Journal of Forest Research, 2011, 41(7):1547-1554.
doi: 10.1139/x11-068 |
[29] | 曾鸣, 聂祥永, 曾伟生. 中国杉木相容性立木材积和地上生物量方程[J]. 林业科学, 2013, 49(10):74-79. |
[30] |
Wang Xiangping, Fang Jingyun, Zhu Biao. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255:4007-4020.
doi: 10.1016/j.foreco.2008.03.055 |
[31] | 曾伟生, 唐守正. 东北落叶松和南方马尾松地下生物量模型研建[J]. 北京林业大学学报, 2011, 33(2):1-6. |
[32] |
Mugasha W A, Eid T, Bollandsas O M, et al. Allometric models for prediction of above-and belowground biomass of trees in the miombo woodlands of Tanzania[J]. Forest Ecology and Management, 2013, 310:87-101.
doi: 10.1016/j.foreco.2013.08.003 |
[33] |
Parresol B R. Additivity of nonlinear biomass equations[J]. Canadian Journal of Forest Research, 2001, 31(5):865-878.
doi: 10.1139/x00-202 |
[34] |
Dong Lihu, Zhang Lianjun, Li Fengri. Developing two additive biomass equations for three coniferous plantation species in northeast China[J]. Forests, 2016, 7(7):136.
doi: 10.3390/f7070136 |
[35] |
Fu Liyong, Lei Yuancai, Wang Guangxing, et al. Comparison of seemingly unrelated regressions with multivariate errors-invariables models for developing a system of nonlinear additive biomass equations[J]. Trees, 2016, 30:839-857.
doi: 10.1007/s00468-015-1325-x |
[36] | 唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程)[M]. 北京: 科学出版社. 2008. |
[37] | Parresol B R. Assessing tree and stand biomass:a review with examples and critical comparisons[J]. Forest Science, 1999, 45:573-593. |
[38] | 曾伟生, 唐守正. 立木生物量模型的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113. |
[1] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[2] | LIU Xuejian, ZHANG Zhihua, HAO Beibei, WANG Nan, MA Yu, HE Bin, ZHANG Siyi. Effects of Eucalyptus Afforestationon the Soil Organic Carbon Pool on the Hillslope of in the Red Soil Collapsing Erosion Area [J]. Forest and Grassland Resources Research, 2023, 0(6): 75-81. |
[3] | ZHANG Huifang, ZHU Yali, ZHANG Jinglu, GAO Jian, DILIXIATI·Baoerhan . Above-Ground Biomass Prediction of Arbor Forest in Altay Mountain Area Based on High-Resolution Remote Sensing Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 104-110. |
[4] | NIE Jing, LU Chi, OU Guanglong, XU Hui. Two-Stage Sampling Estimation of Above-Ground Biomass of Pinus kesiya var.langbianensis Based on Remote Sensing Factors from Landsat8 OLI [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 68-75. |
[5] | HE Peng, CHEN Zhenxiong, LIU Xianzhao. Developing Stand Basal Area Growth Models for Pinus massoniana and Cunninghamia lanceolata in Hunan Province [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 56-61. |
[6] | YANG Xueyun, ZENG Weisheng, CHEN Xinyun. Research on Developing Stand Volume,Biomass and Carbon Stock Models for Major Forest Types in Beijing [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 124-130. |
[7] | ZENG Weisheng, SUN Xiangnan, WANG Liuru, WANG Wei, PU Ying. Developing Aerial Stand Volume Tables Based on Laser Scanning Data for Forest Region of Northeast China [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 147-155. |
[8] | XV Changjian, LIU Yingchun, ZUO Lijun, LI Jiangeng, ZHANG Ting, HAN Lumeng, FANG Yu, ZHANG Yin, WANG Tian. Estimation on Forest Above-Ground Biomass Based on Simulated Large-Footprint LiDAR and Multi-Layer Perceptron [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 50-60. |
[9] | JIN Jing, YUE Cairong, LI Chungan, GU Lei, LUO Hongbin, ZHU Bodong. Estimation on Forest Volume Based on ALS Data and Dummy Variable Technology [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(1): 77-85. |
[10] | MIN Zhiqiang, HU Yunyun, WANG Dejun, SUN Jingmei, LI Hongtao, LI Weizhong. Study on Growth Model of DBH and Height Based on Dummy Variable for Natural oak Forest in Qinba Mountain Area [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(5): 89-99. |
[11] | ZENG Weisheng, SUN Xiangnan, WANG Liuru, WANG Wei, PU Ying. Estimating Forest Volume, Mean Height and Basal Area Based on Airborne Laser Scanning Data [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 79-86. |
[12] | WU Hongwei, TIAN Yi, HUANG Guangcan, ZHANG Weizhi, ZHUANG Chongyang, JIANG Xidian. A Growth Model for Pinus elliottii Based on the Nonlinear Measurement Error Method [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(6): 69-74. |
[13] | DUAN Chunyan, XU Guangping, SHEN Yuyi, LUO Yajin, LI Yanqiong, ZHANG Denan, SUN Yingjie, HE Chengxin. Ecological Stoichiometry Characteristics of Soils in Eucalyptus Plantations with Different Ages in North Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 117-124. |
[14] | JIANG Yun’an, XIE Shouxin, JIN Aixian, CUI Haiou, WANG Hongchun, ZHOU Rui. Management Strategy of New Generation Eucalyptus Plantation in Brazil and Its Enlightenment [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 125-129. |
[15] | ZENG Weisheng, CHEN Xinyun, YANG Xueyun. Developing Individual Tree Diameter Growth Rate Models for Major Tree Species in Inner Mongolia [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(2): 38-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||