FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (1): 141-152.doi: 10.13466/j.cnki.lyzygl.2023.01.017
• Technical Application • Previous Articles Next Articles
XIE Wenchun1(), LI Qiangfeng1(), LI Yanchun1, WU Zhenshan2, YANG Zhengfan2
Received:
2022-12-24
Revised:
2023-02-12
Online:
2023-02-28
Published:
2023-05-05
CLC Number:
XIE Wenchun, LI Qiangfeng, LI Yanchun, WU Zhenshan, YANG Zhengfan. Object-Oriented Classification of Wetland Vegetation Community in Jilin-1 Remote Sensing Image[J]. FOREST RESOURCES WANAGEMENT, 2023, (1): 141-152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.01.017
Tab.1
Vegetation community division of Dulan Lake wetland
植被类型 | 优势种 | 主要伴生种 | 采样点 |
---|---|---|---|
沼泽草甸 | 芦苇(Phragmites australis) | 盐角草(Salicornia europaea) | 40 |
高寒灌丛 | 小果白刺(Nitraria sibirica) | 大白刺(Nitraria roborowskii) | 40 |
高寒灌丛 | 细枝盐爪爪(Kalidium gracile)+ 芨芨草(Achnatherum splendens) | 猪毛菜Kali collinum)、驼绒藜(Krascheninnikovia ceratoides)、 盐地碱蓬(Suaeda salsa)、红砂(Reaumuria songarica) | 36 |
沼泽草甸 | 盐角草(Salicornia europaea) | 盐爪爪(Kalidium foliatum) | 30 |
高寒灌丛 | 枸杞(Lycium chinense) | 小果白刺(Nitraria sibirica) | 28 |
高寒草甸 | 早熟禾(Poa annua)+ 盐地风毛菊(Saussurea salsa) | 海乳草(Lysimachia maritima)、海韭菜(Triglochin maritimum)、 马蔺(Iris lactea) | 28 |
Tab.2
Initial feature statistics
特征类别 | 特征描述 | 数量 | |
---|---|---|---|
光谱特征 | 归一化植被指数(NDVI) | NDVI=(NIR-R)/(NIR+R) | 16 |
土壤修正植被指数(SAVI) | SAVI=(NIR-R)×(1+0.5)/(NIR+R+0.5) | ||
比值植被指数(RVI) | RVI=NIR/R | ||
归一化水体指数(NDWI) | NDWI=(G-NIR)/(G+NIR) | ||
土壤调节植被指数(OSAVI) | OSAVI=(NIR-R)/(NIR+R+0.16) | ||
增强型植被指数(EVI) | EVI=2.5×(NIR-R)/(NIR+6×R-7.5×B+1) | ||
亮度、波段均值、波段标准差、最大差异度量 | |||
纹理特征 | 均值、同质性、对比度、墒、相关性、差异性、标准差、角二阶矩 | 40 | |
几何特征 | 面积、紧致度、长宽比、矩形匹配度、形状指数 | 5 |
Tab.3
Feature space optimization results
序号 | 特征名称 | 序号 | 特征名称 | 序号 | 特征名称 | 序号 | 特征名称 |
---|---|---|---|---|---|---|---|
1 | Area | 11 | Mean G | 21 | GLCM Correlation(90°) | 31 | GLCM Homogeneity(45°) |
2 | GLCM Mean(0°) | 12 | Standard deviation R | 22 | GLCM Homogeneity(135°) | 32 | EVI |
3 | Brightness | 13 | Standard deviation NIR | 23 | Rectandular fit | 33 | OSAVI |
4 | GLCM Mean(45°) | 14 | Standard deviation G | 24 | Max.diff. | 34 | NDWI |
5 | Compactness | 15 | Standard deviation B | 25 | GLCM Entropy(90°) | 35 | RVI |
6 | GLCM Entropy(all dir.) | 16 | GLCM Homogeneity(90°) | 26 | GLCM Mean(90°) | 36 | SAVI |
7 | GLCM Mean(all dir.) | 17 | GLCM Entropy(45°) | 27 | GLCM Mean(135°) | 37 | NDVI |
8 | Shape index | 18 | GLCM Homogeneity(0°) | 28 | GLCM StdDev(135°) | 38 | GLCM Correlation(45°) |
9 | Mean NIR | 19 | GLCM Entropy(135°) | 29 | GLCM Correlation(135°) | 39 | GLCM Correlation(all dir.) |
10 | Mean B | 20 | Length/Width | 30 | GLCM Correlation(0°) | 40 | GLCM Entropy(0°) |
Tab.4
Separation distance matrix of feature categories
类别 | 类别 | ||||||||
---|---|---|---|---|---|---|---|---|---|
PA | BG | BW | NS | KG+AS | LC | IS | PA+SS | SE | |
PA | 0 | 16.84 | 18.04 | 8.20 | 12.46 | 14.11 | 16.53 | 11.71 | 7.32 |
BG | 16.84 | 0 | 13.18 | 7.59 | 7.26 | 7.56 | 3.31 | 4.05 | 5.33 |
BW | 18.04 | 13.18 | 0 | 17.75 | 17.34 | 22.16 | 13.55 | 14.57 | 16.63 |
NS | 8.20 | 7.59 | 17.75 | 0 | 2.34 | 2.13 | 6.55 | 2.44 | 2.29 |
KG+AS | 12.46 | 7.26 | 17.34 | 2.34 | 0 | 3.03 | 4.40 | 3.05 | 4.06 |
LC | 14.11 | 7.56 | 22.16 | 2.13 | 3.04 | 0 | 5.94 | 3.07 | 2.52 |
IS | 16.53 | 3.31 | 13.55 | 6.55 | 4.40 | 5.94 | 0 | 4.30 | 5.83 |
PA+SS | 11.71 | 4.05 | 14.57 | 2.44 | 3.05 | 3.07 | 4.30 | 0 | 1.74 |
SE | 7.32 | 5.33 | 16.63 | 2.29 | 4.06 | 2.52 | 5.83 | 1.74 | 0 |
Tab.5
Confusion matrix of vegetation community classification accuracy in Dulan Lake wetland
植被群落及精度 | BG | BW | IS | KG+AS | LC | NS | PA | PA+SS | SE | UA/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KNN | BG | 32 | 2 | 1 | 0 | 0 | 3 | 0 | 4 | 0 | 76.19 | |||||||||||
BW | 3 | 51 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 92.73 | ||||||||||||
IS | 3 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 70.00 | ||||||||||||
KG+AS | 1 | 0 | 0 | 59 | 4 | 9 | 2 | 0 | 1 | 77.63 | ||||||||||||
LC | 0 | 0 | 0 | 0 | 31 | 2 | 0 | 0 | 0 | 93.94 | ||||||||||||
NS | 0 | 0 | 0 | 2 | 2 | 56 | 1 | 2 | 0 | 88.89 | ||||||||||||
PA | 0 | 0 | 0 | 1 | 0 | 4 | 43 | 0 | 3 | 84.31 | ||||||||||||
PA+SS | 0 | 0 | 0 | 5 | 0 | 3 | 2 | 64 | 9 | 77.11 | ||||||||||||
SE | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 9 | 30 | 69.77 | ||||||||||||
PA/% | 82.05 | 96.23 | 87.50 | 85.51 | 83.78 | 71.79 | 86.00 | 81.01 | 69.77 | |||||||||||||
OA%=81.80%,Kappa系数=0.79 | ||||||||||||||||||||||
RF | BG | 21 | 2 | 1 | 5 | 0 | 3 | 0 | 4 | 0 | 58.33 | |||||||||||
BW | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100.00 | ||||||||||||
IS | 5 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 50.00 | ||||||||||||
KG+AS | 8 | 0 | 0 | 44 | 0 | 13 | 2 | 6 | 5 | 56.41 | ||||||||||||
LC | 0 | 0 | 0 | 1 | 34 | 1 | 0 | 0 | 0 | 94.44 | ||||||||||||
NS | 3 | 0 | 1 | 9 | 1 | 48 | 5 | 8 | 0 | 64.00 | ||||||||||||
PA | 0 | 0 | 0 | 3 | 0 | 4 | 42 | 0 | 0 | 85.71 | ||||||||||||
PA+SS | 2 | 0 | 1 | 3 | 2 | 8 | 0 | 59 | 11 | 68.60 | ||||||||||||
SE | 0 | 0 | 0 | 4 | 0 | 1 | 1 | 2 | 27 | 77.14 | ||||||||||||
PA/% | 53.85 | 96.23 | 62.50 | 63.77 | 91.89 | 61.54 | 84.00 | 74.68 | 62.79 | |||||||||||||
OA%=72.59%,Kappa系数=0.68 |
[1] | 吕宪国, 邹元春. 中国湿地研究[M]. 长沙: 湖南教育出版社, 2017. |
[2] | 董婵, 黄英豪, 闵凡路. 湿地植物与生态环境[M]. 天津: 天津科学技术出版社. 2014. |
[3] | 李旭, 谢永宏, 黄继山, 等. 湿地植被格局成因研究进展[J]. 湿地科学, 2009, 7(3):280-288. |
[4] |
郭柯, 方精云, 王国宏, 等. 中国植被分类系统修订方案[J]. 植物生态学报, 2020, 44(2):111-127.
doi: 10.17521/cjpe.2019.0271 |
[5] |
Roughgarden J, Running S W, Matson P A. What does remote sensing do for ecology?[J]. Ecology, 1991, 72(6):1918-1922.
doi: 10.2307/1941546 |
[6] |
Ozesmi S L, Bauer M E. Satellite remote sensing of wetlands[J]. Wetlands ecology and management, 2002, 10(5):381-402.
doi: 10.1023/A:1020908432489 |
[7] | Schmidt K S, Skidmore A K, Kloosterman E H, et al. Mapping coastal vegetation using an expert system and hyperspectral imagery[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(6):703-715. |
[8] |
Szantoi Z, Escobedo F, Abd-Elrahman A, et al. Analyzing fine-scale wetland composition using high resolution imagery and texture features[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23:204-212.
doi: 10.1016/j.jag.2013.01.003 |
[9] | 闫利, 江维薇. 多光谱遥感影像植被覆盖分类研究进展[J]. 国土资源遥感, 2016, 28(2):8-13. |
[10] | 张强. 湿地植被遥感分类研究进展[J]. 世界林业研究, 2019, 32(3):49-54. |
[11] | 谭衢霖, Steve Johansen. 基于像元和对象分类的城区植被高分辨率遥感制图比较研究[J]. 应用基础与工程科学学报, 2011, 19(3):441-448. |
[12] |
Johansen K, Coops N C, Gergel S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing of Environment, 2007, 110(1):29-44.
doi: 10.1016/j.rse.2007.02.014 |
[13] |
Gilmore M S, Wilson E H, Barrett N, et al. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh[J]. Remote Sensing of Environment, 2008, 112(11):4048-4060.
doi: 10.1016/j.rse.2008.05.020 |
[14] | 杨盼盼. 基于高分辨率遥感影像纹理特征的面向对象植被分类方法研究[D]. 昆明: 云南师范大学, 2017. |
[15] |
Carle M V, Wang L, Sasser C E. Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery[J]. International journal of remote sensing, 2014, 35(13):4698-4716.
doi: 10.1080/01431161.2014.919685 |
[16] |
Bhatnagar S, Gill L, Regan S, et al. Mapping vegetation communities inside wetlands using Sentinel-2 imagery in Ireland[J/OL]. International Journal of Applied Earth Observation and Geoinformation, 2020, 88:102083.(2020-02-14)[2022-08-23]. https://www.sciencedirect.com/science/article/pii/S0303243419308359?via%3Dihub.
doi: 10.1016/j.jag.2020.102083 |
[17] | Yeo S, Lafon V, Alard D, et al. Classification and mapping of saltmarsh vegetation combining multispectral images with field data[J/OL]. Estuarine,Coastal and Shelf Science, 2020, 236:106643.(2020-02-17)[2022-08-23]https://www.sciencedirect.com/science/article/abs/pii/S027277141930232X. |
[18] | Ju Y, Bohrer G. Classification of wetland vegetation based on NDVI time series from the HLS dataset[J/OL]. Remote Sensing, 2022, 14(9):2107.(2022-04-27)[2022-08-25]https://www.mdpi.com/2072-4292/14/9/2107. |
[19] | Lou Peiqing, Fu Bolin, He Hongchang, et al. An optimized object-based random forest algorithm for marsh vegetation mapping using high-spatial-resolution GF-1 and ZY-3 data[J/OL]. Remote Sensing, 2020, 12(8):1270.(2022-04-17)[2022-08-25]https://www.mdpi.com/2072-4292/12/8/1270. |
[20] | 谢锦莹, 丁丽霞, 王志辉, 等. 基于FCN与面向对象的滨海湿地植被分类[J]. 林业科学, 2020, 56(8):98-106. |
[21] | 刘尚武. 青海植物志[M]. 青海: 青海人民出版社,1996. |
[22] |
金伊丽, 王皓言, 魏临风, 等. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7):846-854.
doi: 10.17521/cjpe.2022.0174 |
[23] | GB/T 21010-2017,土地利用现状分类[S]. |
[24] |
刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008 |
[25] | 邹文涛, 张怀清, 鞠洪波, 等. 基于QUEST树的高寒湿地植被覆盖类型遥感分类研究[J]. 中南林业科技大学学报, 2011, 31(12):138-144. |
[26] | 张学儒, 刘林山, 张镱锂, 等. 基于ENVI ZOOM面向对象的高海拔灌丛植被提取:以定日县为例[J]. 地理与地理信息科学, 2010, 26(4):104-108. |
[27] | 陈春雷, 武刚. 面向对象的遥感影像最优分割尺度评价[J]. 遥感技术与应用, 2011, 26(1):96-102. |
[28] | 郭亚鸽, 于信芳, 江东, 等. 面向对象的森林植被图像识别分类方法[J]. 地球信息科学学报, 2012, 14(4):514-522. |
[29] |
Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of photogrammetry and remote sensing, 2004, 58(3-4):239-258.
doi: 10.1016/j.isprsjprs.2003.10.002 |
[30] | 邬亚娟, 刘廷玺, 童新, 等. 基于面向对象的干旱半干旱地区植被分类[J]. 干旱区研究, 2020, 37(4):1026-1034. |
[31] | 马浩然, 赵天忠, 曾怡. 面向对象的最优分割尺度下多层次森林植被分类[J]. 东北林业大学学报, 2014, 42(9):52-57. |
[32] |
陈丽萍, 孙玉军. 基于不同决策树的面向对象林区遥感影像分类比较[J]. 应用生态学报, 2018, 29(12):3995-4003.
doi: 10.13287/j.1001-9332.201812.015 |
[33] | 李哲, 张沁雨, 彭道黎. 基于高分二号遥感影像的树种分类方法[J]. 遥感技术与应用, 2019, 34(5):970-982. |
[34] | 宗影, 李玉凤, 刘红玉. 基于面向对象随机森林方法的滨海湿地植被分类研究[J]. 南京师范大学学报:工程技术版, 2021, 21(4):47-55. |
[35] | 张晨宇, 陈沈良, 李鹏, 等. 现行黄河口保护区典型湿地植被时空动态遥感监测[J]. 海洋学报, 2022, 44(1):125-136. |
[36] | 施佩荣, 陈永富, 刘华, 等. 基于改进的面向对象遥感影像分类方法研究:以西藏米林县典型林区为例[J]. 遥感技术与应用, 2017, 32(3):466-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||