FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (3): 56-64.doi: 10.13466/j.cnki.lyzygl.2023.03.008
• Scientific Research • Previous Articles Next Articles
LUO Dan1(), WANG Qingfei2, CHAO Bixiao3, LI Le2, HAO Zezhou2, LU Yuan4, WANG Cheng5, WU Ruichen2, LIU Feipeng1, PEI Nancai2()
Received:
2023-04-11
Revised:
2023-04-25
Online:
2023-06-28
Published:
2023-08-09
CLC Number:
LUO Dan, WANG Qingfei, CHAO Bixiao, LI Le, HAO Zezhou, LU Yuan, WANG Cheng, WU Ruichen, LIU Feipeng, PEI Nancai. Evaluation on Fire Risk Rating of Forest Stands in Wildland-Urban Interface—A Case Study of Guangzhou City[J]. FOREST RESOURCES WANAGEMENT, 2023, (3): 56-64.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.03.008
Tab.1
Basic characteristics of the sampling plots
林分火险因子 | 描述 |
---|---|
植被类型(C1) | 根据林分树种叶的形状,将林分分为阔叶林、针叶林、针阔混交林,通常阔叶林、针阔混交林、针叶林的火灾危险性依次增强。 |
优势种燃烧级别(C2) | 林分优势树种燃烧级别越高,林分燃烧性越高,火险等级越高,优势种燃烧级别根据《全国森林火险区划等级》 (LY/T 1063—2008)确定。 |
生物量(C3) | 生物量为样地所有乔木的地上生物量,生物量越高,一定程度上说明林分的成熟度高、林龄大,且发生火灾后燃烧的物质多,火灾强度大,危险性高。 |
平均枝下高(C4) | 样地所有胸径大于5cm乔木的枝下高平均值,枝下高越高,火灾危险性越低。 |
平均树高(C5) | 样地所有胸径大于5cm乔木的平均树高,通常乔木越高,树种抗火性越强,火灾危险性越低。 |
平均胸径(C6) | 样地所有胸径大于5cm乔木的平均胸径,通常胸径越大,树种抗火性越强,火灾危险性越低。 |
地表可燃物载量(C7) | 样地内1.5m以下所有植被的单位面积质量,地表可燃物载量越低,越不易发生地表火,或火灾危险性越低。 |
冠层可燃物载量(C8) | 样地内所有胸径大于0.5cm乔木的冠层单位面积质量,冠层可燃物载量越高,发生火灾后,冠火强度越大,火灾危险性越高。 |
树冠火引发层可燃 物载量(C9) | 样地内所有树高小于3m乔木的单位面积质量,树冠火引发层可燃物载量越高,地表火越容易引发树冠火,林地火灾危险性越高。 |
郁闭度(C10) | 样地中乔木树冠在阳光直射下在地面的总投影面积(冠幅)与此林地(林分)总面积的比值,反映林分的密度。郁闭度越高,林内透光越小,阳性杂草越少,且林内越易形成低温、湿润的环境,火灾危险性越小。 |
冠层连续性(C11) | 所有树高大于5m乔木的树冠垂直投影面积之和与样地面积的比值,反映冠层的连续性。冠层连续性越高,树冠火越容易蔓延,火灾危险性越高。 |
Tab.2
Forest stand characteristics and structural fire risk indicators
样地 编号 | 林分类型 | C1 | C2 | C3/ (t/hm2) | C4/ m | C5/ m | C6/ m | C7/ (t/hm2) | C8/ (t/hm2) | C9/ (t/hm2) | C10 | C11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 润楠林 | 阔叶林 | 难燃 | 205.10 | 1.29 | 10.7 | 0.17 | 6.33 | 61.53 | 3.90 | 0.75 | 1.86 |
2 | 华润楠林 | 阔叶林 | 可燃 | 241.74 | 1.30 | 10.3 | 0.23 | 5.90 | 82.19 | 1.29 | 0.78 | 2.87 |
3 | 樟树林 | 阔叶林 | 可燃 | 281.90 | 1.51 | 12.5 | 0.21 | 5.86 | 107.12 | 1.53 | 0.78 | 3.24 |
4 | 锥栗林 | 阔叶林 | 可燃 | 299.29 | 1.26 | 11.1 | 0.17 | 6.88 | 104.75 | 2.78 | 0.86 | 2.55 |
5 | 黧蒴林 | 阔叶林 | 可燃 | 290.16 | 1.43 | 9.7 | 0.16 | 7.12 | 92.85 | 1.24 | 0.75 | 2.89 |
6 | 台湾相思林 | 阔叶林 | 可燃 | 177.32 | 2.27 | 12.3 | 0.20 | 6.13 | 44.33 | 2.50 | 0.75 | 2.34 |
7 | 阔叶混交林 | 阔叶林 | 难燃 | 192.31 | 1.52 | 12.8 | 0.23 | 7.45 | 69.23 | 2.44 | 0.76 | 2.27 |
8 | 桉树林 | 阔叶林 | 易燃 | 352.32 | 1.52 | 14.9 | 0.18 | 8.55 | 133.88 | 0.69 | 0.81 | 3.21 |
9 | 大叶相思林 | 阔叶林 | 可燃 | 178.73 | 1.38 | 12.4 | 0.17 | 6.40 | 51.83 | 1.58 | 0.75 | 2.71 |
10 | 尖叶杜英林 | 阔叶林 | 可燃 | 127.08 | 1.76 | 11.8 | 0.17 | 7.16 | 41.94 | 0.41 | 0.72 | 2.61 |
11 | 木荷林 | 阔叶林 | 难燃 | 168.37 | 2.43 | 13.1 | 0.18 | 2.96 | 42.09 | 0.68 | 0.81 | 2.33 |
12 | 杉木纯林 | 针叶林 | 可燃 | 125.11 | 3.29 | 15.2 | 0.23 | 10.64 | 25.02 | 1.62 | 0.64 | 1.28 |
13 | 杉阔混交林 | 针阔混交林 | 可燃 | 196.61 | 1.41 | 10.2 | 0.12 | 8.69 | 45.22 | 2.29 | 0.71 | 2.21 |
14 | 米锥林 | 阔叶林 | 难燃 | 263.92 | 1.27 | 9.2 | 0.17 | 6.63 | 97.65 | 6.97 | 0.69 | 2.74 |
15 | 鸭脚木林 | 阔叶林 | 可燃 | 301.77 | 1.34 | 11.2 | 0.18 | 6.65 | 87.51 | 0.47 | 0.76 | 2.98 |
16 | 枫香林 | 阔叶林 | 易燃 | 136.89 | 1.59 | 12.0 | 0.30 | 3.84 | 56.12 | 4.81 | 0.76 | 1.65 |
Tab.4
Indicators and weights at all levels of the fire risk evaluation index system
准则层(B) | 子准则层(C) | 指标层(D) | |||||
---|---|---|---|---|---|---|---|
指标 | 权重WB | 指标 | 权重WC | 指标 | 权重WD | ||
林分群落特征因子 (B1) | 0.608 | 植被类型(C1) | 0.157 | 针叶林(D1) | 0.090 | ||
阔叶林(D2) | 0.045 | ||||||
针阔混交林(D3) | 0.022 | ||||||
优势种燃烧级别(C2) | 0.199 | 难燃(D4) | 0.017 | ||||
可燃(D5) | 0.054 | ||||||
易燃(D6) | 0.127 | ||||||
生物量(C3) | 0.082 | 0~<100 t/hm2(D7) | 0.008 | ||||
100~<180 t/hm2(D8) | 0.013 | ||||||
180~<260 t/hm2(D9) | 0.023 | ||||||
≥260 t/hm2(D10) | 0.038 | ||||||
平均枝下高(C4) | 0.093 | 0~<1 m(D11) | 0.041 | ||||
1~<1.5 m(D12) | 0.027 | ||||||
1.5~<2 m(D13) | 0.014 | ||||||
2~<2.5 m(D14) | 0.008 | ||||||
≥2.5 m(D15) | 0.004 | ||||||
平均树高(C5) | 0.043 | 0~<8 m(D16) | 0.021 | ||||
8~<11 m(D17) | 0.013 | ||||||
11~<14 m(D18) | 0.005 | ||||||
≥14 m(D19) | 0.003 | ||||||
平均胸径(C6) | 0.034 | 0~<0.11 m(D20) | 0.015 | ||||
0.11~<0.16 m(D21) | 0.009 | ||||||
0.16~<0.21 m(D22) | 0.005 | ||||||
0.21~<0.26 m(D23) | 0.003 | ||||||
≥0.26 m(D24) | 0.002 | ||||||
林分群落垂直 结构因子 (B2) | 0.272 | 地表可燃物载量(C7) | 0.165 | 0~<4 t/hm2(D25) | 0.016 | ||
4~<8 t/hm2(D26) | 0.042 | ||||||
≥8 t/hm2(D27) | 0.108 | ||||||
冠层可燃物载量(C8) | 0.033 | 0~<25 t/hm2(D28) | 0.002 | ||||
25~<50 t/hm2(D29) | 0.003 | ||||||
50~<75 t/hm2(D30) | 0.005 | ||||||
75~<100 t/hm2(D31 | 0.008 | ||||||
≥100 t/hm2(D32) | 0.016 | ||||||
树冠火引发层可燃物载量(C9) | 0.074 | 0~<2 t/hm2(D33) | 0.005 | ||||
2~<4 t/hm2(D34) | 0.008 | ||||||
4~<6 t/hm2(D35) | 0.019 | ||||||
≥6 t/hm2(D36) | 0.041 | ||||||
林分群落水平 结构因子 (B3) | 0.12 | 郁闭度(C10) | 0.08 | 0~<0.7(D37) | 0.051 | ||
0.7~<0.8(D38) | 0.021 | ||||||
≥0.8(D39) | 0.008 | ||||||
冠层连续性(C11) | 0.04 | 0~<2(D40) | 0.003 | ||||
2~<2.5(D41) | 0.005 | ||||||
2.5~<3(D42) | 0.012 | ||||||
≥3(D43) | 0.020 |
Tab.5
Heterogeneity test results of fire risk index weight
指标级 | λmax | CI | RI | CR |
---|---|---|---|---|
A-Bi | 3.074 | 0.037 | 0.52 | 0.071 |
B1-Ci | 6.242 | 0.048 | 1.26 | 0.038 |
B2-Ci | 3.074 | 0.037 | 0.52 | 0.071 |
B3-Ci | 2.000 | 0.000 | 0.00 | 0.000 |
C1-Di | 3.000 | 0.000 | 0.52 | 0.000 |
C2-Di | 3.054 | 0.027 | 0.52 | 0.052 |
C3-Di | 4.031 | 0.010 | 0.89 | 0.012 |
C4-Di | 5.207 | 0.052 | 1.12 | 0.046 |
C5-Di | 4.000 | 0.000 | 0.89 | 0.000 |
C6-Di | 5.103 | 0.026 | 1.12 | 0.023 |
C7-Di | 3.018 | 0.009 | 0.52 | 0.017 |
C8-Di | 5.079 | 0.019 | 1.12 | 0.018 |
C9-Di | 4.000 | 0.000 | 0.89 | 0.000 |
C10-Di | 3.038 | 0.019 | 0.52 | 0.037 |
C11-Di | 4.000 | 0.000 | 0.89 | 0.000 |
[1] | Mota P, Reis B, Zatelli K, et al. Forest fire hazard mapping of a state park in the Atlantic forest,MG,Brazil[J]. Australian Journal of Basic and Applied Sciences, 2016, 10(15):223-230. |
[2] |
Coban H O, Erdi'n C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise,Turkey[J]. Applied Ecology and Environmental Research, 2020, 18(1):1567-1583.
doi: 10.15666/aeer |
[3] | Mitsopoulos I, Trapatsas P, Xanthopoulos G. SYPYDA:A software tool for fire management in Mediterranean pine forests of Greece[J]. Computersand Electronics in Agriculture, 2016, 121:195-199. |
[4] | 李缙. 沈阳马耳山森林群落地表可燃物及火险等级的研究[D]. 沈阳: 沈阳农业大学, 2017. |
[5] | 徐丽华. 地被可燃物与林型火险等级划分[J]. 辽宁林业科技, 2001(6):3-6. |
[6] | 宗学政, 田晓瑞, 刘畅. 林分尺度上的森林火灾风险评估方法及应用[J]. 林业科学研究, 2021, 34(5):69-78. |
[7] | 晏颖杰, 范少辉, 官凤英. 地基激光雷达技术在森林调查中的应用研究进展[J]. 世界林业研究, 2018, 31(4):42-47. |
[8] | Lim K, Treitz P, Wulder M, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography, 2003, 27(1):88-106. |
[9] |
Wilson N, Bradstock R, Bedward M. Detecting the effects of logging and wildfire on forest fuel structure using terrestrial laser scanning(TLS)[J]. Forest Ecology and Management, 2021, 488:119037.
doi: 10.1016/j.foreco.2021.119037 |
[10] | Stewart S I, Radeloff V C, Hammer R B, et al. Defining the wildland-urban interface[J]. Journal of Forestry, 2007, 105(4):201-207. |
[11] |
Gibbons P, Van Bommel L, Gill A M, et al. Land management practices associated with house loss in wildfires[J]. PLoS One, 2012, 7(1):e29212.
doi: 10.1371/journal.pone.0029212 |
[12] | FXPC/LC F-01,森林可燃物标准地调查技术规范[S]. |
[13] |
Eskandari S. A new approach for forest fire risk modeling using fuzzy AHP and GIS in Hyrcanian forests of Iran[J]. Arabian Journal of Geosciences, 2017, 10(8):1-13.
doi: 10.1007/s12517-016-2714-1 |
[14] |
Nuthammachot N, Stratoulias D. Multi-criteria decision analysis for forest fire risk assessment by coupling AHP and GIS:Method and case study[J]. Environment,Development and Sustainability, 2021, 23:17443-17458.
doi: 10.1007/s10668-021-01394-0 |
[15] | Chavan M, Das K, Suryawanshi R. Forest fire risk zonation using remote sensing and GIS in Huynial watershed,Tehri Garhwal district,UA[J]. International Journal of Basic and Applied Research, 2012, 2(7):6-12. |
[16] |
Beverly J L, Leverkus S E, Cameron H, et al. Stand-level fuel reduction treatments and fire behaviour in canadian boreal conifer forests[J]. Fire, 2020, 3(3):35.
doi: 10.3390/fire3030035 |
[17] | LY/T 1063—2008,全国森林火险区划等级[S]. |
[18] | 李颖, 严思晓, 张秀芳, 等. 武夷山国家公园内4种森林类型地表可燃物热值特征比较[J]. 应用与环境生物学报, 2020, 26(6):1385-1391. |
[19] |
Arroyo L A, Pascual C, Manzanera J A. Fire models and methods to map fuel types:The role of remote sensing[J]. Forest Ecology and Management, 2008, 256(6):1239-1252.
doi: 10.1016/j.foreco.2008.06.048 |
[20] | 李炳怡, 刘冠宏, 舒立福. 北京门头沟区主要林分类型地表火行为模拟研究[J]. 北京林业大学学报, 2022, 44(6):96-105. |
[21] | 解国磊, 丁新景, 马风云, 等. 鲁中山区主要森林类型易燃可燃物垂直分布及其燃烧性[J]. 西北林学院学报, 2016, 31(1):158-163. |
[22] | 王叁, 树奎, 李德, 等. 云南松林可燃物的垂直分布及影响因子[J]. 应用生态学报, 2013, 24(2):331-337. |
[23] | 胡海清, 鞠琳. 小兴安岭8个阔叶树种的燃烧性能[J]. 林业科学, 2008, 44(5):90-95. |
[24] |
Kataki R, Konwer D. Fuelwood characteristics of some indigenous woody species of north-east India[J]. Biomass and Bioenergy, 2001, 20(1):17-23.
doi: 10.1016/S0961-9534(00)00060-X |
[25] |
Cohn J S, Lunt I D, Ross K A, et al. How do slow-growing,fire-sensitive conifers survive in flammable eucalypt woodlands?[J]. Journal of Vegetation Science, 2011, 22(3):425-435.
doi: 10.1111/jvs.2011.22.issue-3 |
[26] |
Trauernicht C, Murphy B P, Portner T E, et al. Tree cover-fire interactions promote the persistence of a fire-sensitive conifer in a highly flammable savanna[J]. Journal of Ecology, 2012, 100(4):958-968.
doi: 10.1111/jec.2012.100.issue-4 |
[27] |
Ager A, Preisler H K, Arca B, et al. Wildfire risk estimation in the Mediterranean area[J]. Environmetrics, 2014, 25(6):384-396.
doi: 10.1002/env.v25.6 |
[28] |
Pourtaghi Z S, Pourghasemi H R, Aretano R, et al. Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques[J]. Ecological Indicators, 2016, 64:72-84.
doi: 10.1016/j.ecolind.2015.12.030 |
[29] | 田晓瑞, 舒立福, 乔启宇, 等. 南方林区防火树种的筛选研究[J]. 北京林业大学学报, 2001(5):43-47. |
[30] | 田晓瑞, 舒立福. 防火林带的应用与研究现状[J]. 世界林业研究, 2000, 13(1):20-26. |
[1] | ZHOU Long, YANG Xiaoxue, DUAN Xiaochen. Comprehensive Adaptability Evaluation of Six Kinds of Landscapeing Plants in Semi-arid Region [J]. Forest and Grassland Resources Research, 2024, 0(1): 73-81. |
[2] | TAN Ying, XU Jun, LIN Congcong, WANG Ke, WANG Wenwu, CHEN Chunlei. Study on the Comprehensive Value Evaluation of Ancient and Famous Tree Resources in Zhejiang Province Based on Analytic Hierarchy Process [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 169-178. |
[3] | JIANG Xuwang, YU Shuhan, LI Yihui, ZHAN Liyu. Research on Evaluation of Elderly Healing Forest Wellness Base [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(3): 71-79. |
[4] | LIU Lijie, XIE Zhuohong, LEI Ming, SHI Yuemou, LI Shengqiang, LIU Ping. Evaluation of Forest Quality Based on Analytic Hierarchy Process —A Case Study in Liuxihe Forest Farm,Guangzhou [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 89-94. |
[5] | HAO Min, TANG Hui, WANG Manlian, LIU Baoyu, CHEN Yujiao. Evaluation and Screening of Ornamental Illicium difengpi Germplasm in Terms of Leaf Morphology Using Analytic Hierarchy Process Method [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(5): 136-144. |
[6] | HU Jiayi, WANG Ruihui, LIU Kaili, ZHANG Bin, ZHOU Yuhuai, LI Xuehui, GONG Yingyun. Effects of Thinning on Ecological Benefits of Cryptomeria fortunei Plantations in High Altitude Area of Western Sichuan [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(4): 80-88. |
[7] | XIE Xiansheng, SU Hongxin, YANG Yuanzheng, LI Chunhai, LU Feng, LUO Weisheng, XU Zhanyong. Estimation of Forest Parameters of Guangxi Eucalyptus Plantation Based on Terrestrial Laser Scanning [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 100-108. |
[8] | Zhipeng XIAO, Polang LIU, Ye LIU, Fangwen HU, Huaizhen PENG, Ziyan ZHANG, Ping GAO. Evaluation and Selection of Potential Scenic View-point Distribution Areas Based on GIS and Fuzzy Analytic Hierarchy Process —An Example from Jiulangshan Mountain Park in Zhuzhou [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(1): 158-165. |
[9] | PENG Chucai, DIAN Yuanyong, ZHOU Zhixiang, CHENG Weijin, XIAO Zhiyan, DONG Lian, LI Xinyu. Quality Evaluation and Analysis on Factors Affecting the Quality of the Forest Belt Around Wuhan City [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(6): 75-83. |
[10] | MENG Meng, MA Jianzhang, JI Jianwei, ZHOU Xiaorui, HU Xinxin. Comprehensive Evaluation and Analysis of Chinese Wildlife Hometown Operation [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(3): 30-35. |
[11] | SUN Yu, LI Jiping, CAO Xiaoyu, XU Zhanyong. Comprehensive Evaluation of Soil Fertility of Cunninghamia lanceolata Ecological Public Welfare Forests in Different Age Groups [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(1): 57-62. |
[12] | LI Shu, ZHANG Wei, LUO Hongyan, WANG Yalei, LAN Siren, CAO Guangqiu. Comprehensive Benefit Evaluation of Undergrowth Plant Allocation Model in Moderately Eroded Areas [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(2): 111-118. |
[13] | PAN Yangliu, ZENG Jin, WEN Ye, YAN Qi, LIU Yuanqiu. Study on the Suitability Evaluation Index System of Forest Wellness Base Construction [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(5): 101-107. |
[14] | FENG Lili, JIA Zhiqing, LI Qingxue, HE Lingxianzi, YANG Kaiyue. The Selection of the Most Suitable Shelter Forest Types for Alpine Sandy Land [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(5): 45-51. |
[15] | LIU Shaohai, ZHAO Tianzhong, LI Saibo. Application of Intuitionistic Fuzzy Sets in Evaluating the Forest Fire Prevention Service with TOPSIS Method [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(3): 62-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||