FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (3): 90-97.doi: 10.13466/j.cnki.lyzygl.2023.03.012
• Scientific Research • Previous Articles Next Articles
ZHOU Mei1(), LI Chungan2(), YANG Chengling3, LI Zhen3
Received:
2023-04-28
Revised:
2023-05-19
Online:
2023-06-28
Published:
2023-08-09
CLC Number:
ZHOU Mei, LI Chungan, YANG Chengling, LI Zhen. Experiments on Estimating Planted Forest Inventory Attributes Based on UAV-LiDAR Data[J]. FOREST RESOURCES WANAGEMENT, 2023, (3): 90-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.03.012
Tab.2
List of UAV-LiDAR-derived metrics used for establishing the predictive models
变量 | 含义 | 冠层三维结构的刻画角度 | 变量组 |
---|---|---|---|
hp95 | 95%分位数高度 | 冠层高度 | 高度变量 |
Hmean | 点云平均高 | 冠层高度 | 高度变量 |
Hstd | 点云高度的标准差 | 冠层高度 | 高度变量 |
Hcv | 点云高度的变动系数 | 冠层高度 | 高度变量 |
CC | 郁闭度(修正) | 冠层密度 | 密度变量 |
dp50 | 50%分位数密度 | 冠层密度 | 密度变量 |
dp75 | 75%分位数密度 | 冠层密度 | 密度变量 |
LADmean | 叶面积密度均值 | 垂直结构异质性 | 垂直结构变量 |
LADstd | 叶面积密度标准差 | 垂直结构异质性 | 垂直结构变量 |
LADcv | 叶面积密度变动系数 | 垂直结构异质性 | 垂直结构变量 |
VFPmean | 枝叶垂直剖面均值 | 垂直结构异质性 | 垂直结构变量 |
VFPstd | 枝叶垂直剖面标准差 | 垂直结构异质性 | 垂直结构变量 |
VFPcv | 枝叶垂直剖面变动系数 | 垂直结构异质性 | 垂直结构变量 |
Tab.3
The best model formulation for estimating forest inventory attributes
森林类型 | 森林参数 | 模型式 |
---|---|---|
松树林 | 蓄积量(VOL)/m3 | VOLPine=a0Hmeana1CCa2VFPstda3Hstda4dp75a5 |
断面积(BA)/m2 | BAPine=a0Hmeana1CCa2VFPstda3Hcva4dp50a5 | |
平均高(H)/m | HPine=a0hp60a1hp70a2hp80a3CCa4dp50a5 | |
桉树林 | 蓄积量(VOL)/m3 | VOLEucalyptus=a0hp95a1CCa2VFPstda3Hcva4dp75a5 |
断面积(BA)/m2 | BAEucalyptus=a0hp95a1CCa2VFPstda3Hstda4dp75a5 | |
平均高(H)/m | HEucalyptus=a0hp60a1hp80a2 |
Tab.4
Model parameters and their good-of-fit and validation statistics
森林 类型 | 森林 参数 | 样地 数量 | 模型参数估计值 | 修正因子 (CF) | 拟合指标 | 检验指标 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a0 | a1 | a2 | a3 | a4 | a5 | R2 | rRMSE/ % | MPE/ % | R2 | rRMSE/ % | MPE/ % | ||||||||||||||
松树林 | VOL | 33 | 0.172 70 | 1.474 9 | 1.329 4 | -0.163 6 | -0.263 800 | -1.381 2 | 1.009 8 | 0.783 | 12.44 | 4.69 | 0.708 | 13.86 | 5.36 | ||||||||||
BA | 33 | 0.694 70 | 0.701 1 | 0.887 0 | -0.204 4 | -0.365 000 | -0.981 7 | 1.008 4 | 0.676 | 11.94 | 4.51 | 0.616 | 14.26 | 5.04 | |||||||||||
H | 33 | -0.080 12 | -5.177 1 | 8.299 5 | -2.391 0 | 1.136 600 | -1.012 3 | 1.007 0 | 0.846 | 10.30 | 3.88 | 0.794 | 11.06 | 4.15 | |||||||||||
桉树林 | VOL | 35 | -0.288 50 | 1.837 9 | 0.661 7 | 0.211 3 | -0.002 804 | 0.144 5 | 1.018 4 | 0.943 | 15.71 | 5.82 | 0.853 | 17.79 | 6.22 | ||||||||||
BA | 35 | -0.453 30 | 1.252 4 | 0.592 9 | 0.132 7 | -0.054 760 | 0.161 8 | 1.019 1 | 0.903 | 15.91 | 5.89 | 0.844 | 16.72 | 6.72 | |||||||||||
H | 35 | 0.055 13 | -2.560 6 | 3.471 9 | 1.005 9 | 0.899 | 9.87 | 3.59 | 0.833 | 10.85 | 3.81 |
[1] |
Næsset E T. Gobakken J, Holmgren H, et al. Laser scanning of forest resources:The Nordic experience[J]. Scandinavian Journal of Forest Research, 2004, 19(6):482-499.
doi: 10.1080/02827580410019553 |
[2] | White J C, Tompalski P, Vastaranta M, et al. A model development and application guide for generating an enhanced forest inventory using airborne laser scanning data and an area-based approach[R]. Victoria: Canadian Wood Fibre Centre, 2017. |
[3] | 李春干, 李振. 机载激光雷达大区域亚热带森林参数估测的普适性模型式[J]. 林业科学, 2021, 57(10):23-35. |
[4] | 代华兵, 李春干, 庞勇, 等. 基于天空地一体化森林资源调查的小班因子设置与信息获取方法[J]. 林业资源管理, 2021(2):180-188. |
[5] | 李春干, 代华兵. 中国森林资源调查:历史、现状与趋势[J]. 世界林业研究, 2021, 34(6):72-80. |
[6] |
Sankey T, Donager J, McVay J, et al. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA[J]. Remote Sensing of Environment, 2017, 195:30-43.
doi: 10.1016/j.rse.2017.04.007 |
[7] |
Liu Kun, Shen Xin, Cao Lin, et al. Estimating forest structural attri-butes using UAV-LiDAR data in Ginkgo plantations[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:465-482.
doi: 10.1016/j.isprsjprs.2018.11.001 |
[8] |
Cao Lin, Liu Kun, Shen Xin, et al. Estimation of forest structural parameters using UAV-LiDAR data and a process-based model in Ginkgo planted forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4175-4190.
doi: 10.1109/JSTARS.2019.2918572 |
[9] |
D'Oliveira M V N, Broadbent E N, Oliveira L C, et al. Aboveground biomass estimation in Amazonian Tropical Forests:A comparison of aircraft- and gatorEye UAV-borne LiDAR data in the chico mendes extractive reserve in Acre,Brazil[J]. Remote Sensing, 2020, 12:1754.
doi: 10.3390/rs12111754 |
[10] |
Corte A P D, de Vasconcello B N, Rex F E, et al. Applying high-resolution UAV-LiDAR and quantitative structure modelling for estimating tree attributes in a crop-livestock-forest system[J]. Land, 2022, 11:507.
doi: 10.3390/land11040507 |
[11] |
Xu Dandan, Wang Haobin, Xu Weixin, et al. LiDAR applications to estimate forest biomass at individual tree scale:Opportunities,challenges and future perspectives[J]. Forests, 2021, 12(5):550.
doi: 10.3390/f12050550 |
[12] |
Corte A P D, Souza D V, Rex F E, et al. Forest inventory with high-density UAV-Lidar:Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179:105815.
doi: 10.1016/j.compag.2020.105815 |
[13] |
Cao Lin, Liu Kai, Shen Xin, et al. Estimation of forest structural parameters using UAV-LiDAR data and a process-based model in Ginkgo planted forests[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11):4175-4189.
doi: 10.1109/JSTARS.2019.2918572 |
[14] |
Peng Xi, Zhao Anjiu, Chen Yongfu, et al. Comparison of modeling algorithms for forest canopy structures based on UAV-LiDAR:A case study in tropical china[J]. Forests, 2020, 11:1324.
doi: 10.3390/f11121324 |
[15] |
Neuville R Bates J S, Jonard F. Estimating forest structure from UAV-mounted LiDAR point cloud using machine learning[J]. Remote Sensing, 2021, 13:352.
doi: 10.3390/rs13030352 |
[16] |
Næset E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002, 80(1):88-99.
doi: 10.1016/S0034-4257(01)00290-5 |
[17] | 周梅, 王新华, 李春干, 等. 不同样地面积对人工林林分参数的影响[J]. 西部林业科学, 2018, 47(1):110-116. |
[18] |
Li Chungan, Lin Xin, Dai Huabing, et al. Effects of plot size on airborne LiDAR-derived metrics and predicted model performances of subtropical planted forest attributes[J]. Forests, 2022, 13:2124.
doi: 10.3390/f13122124 |
[19] | Li Chungan, Chen Zhongchao, Zhou Xiangbei, et al. Generalized models for subtropical forest inventory attribute estimations using a rule-based exhaustive combination approach with airborne LiDAR-derived metrics[J]. Giscience & Rremote Sensing, 2023, 60(1):2194601. |
[20] |
Ferster C J, Coops N C, Trofymow J A. Aboveground large tree mass estimation in a coastal forest in British Columbia using plot-level metrics and individual tree detection from lidar[J]. Canadian Journal of Remote Sensing, 2009, 35(3):270-275.
doi: 10.5589/m09-014 |
[21] |
Hall S A, Burke I C, Box D O, et al. Estimating stand structure using discrete-return lidar:An example from low density,fire prone ponderosa pine forests[J]. Forest Ecology and Management, 2005, 208(1):189-209.
doi: 10.1016/j.foreco.2004.12.001 |
[22] | 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106-113. |
[23] |
Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidar-derived estimates of forest attributes over space and time:A review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260:112477.
doi: 10.1016/j.rse.2021.112477 |
[24] |
Gobakken T, Næsset E. Assessing effects of laser point density,ground sampling intensity,and field sample plot size on biophysical stand properties derived from airborne laser scanner data[J]. Canadian Journal of Forest Research, 2008, 38:1095-1109.
doi: 10.1139/X07-219 |
[25] | 余铸, 李春干, 苏凯. 等. 基于垂直结构分类的机载激光雷达森林参数估测[J/OL]. 桂林理工大学学报.(2022-05-06)[2023-05-16]. http://kns.cnki.net/kcms/detail/45.1375.n.20220429.1213.002.html. |
[26] | 曾伟生, 孙乡楠, 王六如, 等. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2):31-38. |
[27] |
Liu Hao, Cao Lin, She Guanghui, et al. Extrapolation assessment for forest structural parameters in planted Forests of southern China by UAV-LiDAR samples and multispectral satellite imagery[J]. Remote Sensing, 2022, 14(11):2677.
doi: 10.3390/rs14112677 |
[1] | WU Sha, BIAN Gengzhan, YI Xuan, LYU Yong. Research and Construction of Stand Form Height Model of Quercus glauca Secondary Forest [J]. Forest and Grassland Resources Research, 2024, 0(1): 134-142. |
[2] | HAO Jun, LYU Kangting, HU Tianqi, WANG Yunge, XU Gang. Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning [J]. Forest and Grassland Resources Research, 2024, 0(1): 65-72. |
[3] | WANG Guilin, TAN Wei, CHEN Botao. Height-diameter Model of Cunninghamia lanceolata Based on Deep Neural Network [J]. Forest and Grassland Resources Research, 2024, 0(1): 82-87. |
[4] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[5] | LIU Yan, NIU Xiang, WANG Bing. Spatial-Temporal Evolution of Habitat Quality and Its Prediction in Luoxiao Mountain Area in the Past 25 Years [J]. Forest and Grassland Resources Research, 2023, 0(6): 39-51. |
[6] | YUAN Yuan, SHENG Yan, LIU Linfu, WANG Shuo, LI Juan, AN Li. Spatial-Temporal Evolution Characteristics and Driving Influence Mechanism of Habitat Quality in Kuye River Basin [J]. Forest and Grassland Resources Research, 2023, 0(6): 67-74. |
[7] | TANG Jiajun, WANG Gang, CHAI Zongzheng. Single-TreeVolume Estimation of Pinus massoniana based on Airborne LiDAR Point Cloud [J]. Forest and Grassland Resources Research, 2023, 0(6): 105-112. |
[8] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[9] | MENG Xianjin, LIN Shouming, QIN Lin, HUANG Ninghui, DING Sheng, XUE Yadong, LUO Yong, YANG Tingdong. Green and Beautiful Guangdong Ecological Construction Demonstration Zone Digital Twin Application Research [J]. Forest and Grassland Resources Research, 2023, 0(5): 113-121. |
[10] | WU Tingtian, CHEN Yiqing, CHEN Zongzhu, LEI Jinrui, CHEN Xiaohua, LI Yuanling. Analysis on the Spatial Distribution Characteristics of Representative Populations in Tropical Rainforest of Hainan [J]. Forest and Grassland Resources Research, 2023, 0(5): 133-141. |
[11] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[12] | JU Wenzhen, WEI Longbin, PENG Bolin, LI Changcheng, PAN Ting. Study on Driving Factors and Prediction Model of Forest Fire in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 56-62. |
[13] | HE Binyuan, ZENG Rong, DAI Puying, PAN Dan, FANG Yuanyuan, WEI Liquan. Research on the Evaluation and Influencing Factors of High-Quality Development of Forest Cities in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 89-97. |
[14] | ZENG Haowei, LING Chengxing, ZHANG Jun, LIU Hua, ZHAO Feng, JIN Yue, LIU Shuguang, ZHANG Yutong. Habitat Suitability Assessment of Moose Based on Combined MaxEnt and HSI Model [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 115-122. |
[15] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||