FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (4): 62-70.doi: 10.13466/j.cnki.lyzygl.2023.04.008
• Scientific Research • Previous Articles Next Articles
LI Zhongmu1(), NIE Kaihong2, TIAN Dengjuan1, LIU Shenghong1, LU Sai1, LI Genqian1()
Received:
2023-06-20
Revised:
2023-07-09
Online:
2023-08-28
Published:
2023-10-16
CLC Number:
LI Zhongmu, NIE Kaihong, TIAN Dengjuan, LIU Shenghong, LU Sai, LI Genqian. Ecological Stoichiometry Characteristics of C,N and P of Different Components in Premature Aging Plantation Forests of Hippophae rhamnoides ssp.sinensis[J]. FOREST RESOURCES WANAGEMENT, 2023, (4): 62-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.04.008
Tab.1
Variation coefficients of C,N,P mass fractions and stoichiometric ratios of different components
构件 | 含量的变异系数/% | 化学计量比的变异系数/% | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | P | 平均值 | C∶N | C∶P | N∶P | 平均值 | ||
母株叶片 | 1.17 | 3.22 | 2.97 | 2.45 | 6.88 | 5.27 | 3.64 | 5.26 | |
母株枝条 | 2.30 | 1.51 | 3.35 | 2.39 | 3.89 | 5.98 | 4.75 | 4.87 | |
母株树干 | 3.50 | 1.12 | 2.82 | 2.48 | 5.44 | 2.49 | 3.73 | 3.89 | |
垂直根 | 1.22 | 5.39 | 2.98 | 3.20 | 9.96 | 4.77 | 4.87 | 6.53 | |
水平根 | 3.16 | 4.63 | 3.01 | 3.60 | 10.59 | 8.24 | 2.23 | 7.02 | |
子株叶片 | 0.50 | 5.18 | 2.55 | 2.74 | 8.92 | 3.83 | 6.79 | 6.51 | |
子株枝条 | 0.83 | 4.62 | 2.96 | 2.80 | 8.39 | 4.58 | 5.35 | 6.11 | |
子株树干 | 4.05 | 1.66 | 3.78 | 3.16 | 2.22 | 6.89 | 3.77 | 4.29 | |
平均值 | 2.09 | 3.42 | 3.05 | 2.85 | 7.04 | 5.26 | 4.39 | 5.56 |
Tab.2
Allometric growth analysis of different components C,N and P
参数 | 构件 | R2 | P | 斜率 | 斜率置信区间 | 截距 | 截距置信区间 | P-1.0 | 类型 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
下限 | 上限 | 下限 | 上限 | ||||||||
logC&logN | 母株叶片 | 0.748 | 0.000 | 0.777 0 | 0.549 4 | 1.098 9 | 1.625 | 1.230 | 2.021 | 0.139 | I |
母株枝条 | 0.751 | 0.000 | 1.115 0 | 0.789 0 | 1.574 0 | 1.287 | 0.839 | 1.735 | 0.507 | I | |
母株树干 | 0.907 | 0.000 | 0.902 7 | 0.729 6 | 1.116 8 | 0.619 | 1.429 | 1.808 | 0.312 | I | |
垂直根 | 0.727 | 0.000 | 0.568 6 | 0.396 5 | 0.815 3 | 2.049 | 1.798 | 2.299 | 0.005 | A | |
水平根 | 0.673 | 0.001 | 0.540 7 | 0.365 2 | 0.800 6 | 2.132 | 1.864 | 2.400 | 0.005 | A | |
子株叶片 | 0.795 | 0.000 | 0.822 9 | 0.601 4 | 1.125 9 | 1.531 | 1.171 | 1.891 | 0.200 | I | |
子株枝条 | 0.776 | 0.000 | 0.834 5 | 0.601 2 | 1.158 4 | 1.620 | 1.314 | 1.926 | 0.253 | I | |
子株树干 | 0.934 | 0.000 | 1.599 0 | 1.336 0 | 1.915 0 | 1.019 | 0.754 | 1.285 | 0.000 | A | |
logC&logP | 母株叶片 | 0.892 | 0.000 | 0.770 3 | 0.612 1 | 0.969 3 | 2.826 | 2.806 | 2.847 | 0.030 | A |
母株枝条 | 0.871 | 0.000 | 0.888 0 | 0.691 0 | 1.141 1 | 2.992 | 2.882 | 3.103 | 0.320 | I | |
母株树干 | 0.679 | 0.001 | 0.946 2 | 0.641 0 | 1.396 8 | 3.032 | 2.819 | 3.245 | 0.764 | I | |
垂直根 | 0.904 | 0.000 | 0.596 7 | 0.480 7 | 0.740 7 | 2.917 | 2.875 | 2.958 | 0.000 | A | |
水平根 | 0.686 | 0.001 | 0.848 4 | 0.577 2 | 1.247 1 | 3.018 | 2.930 | 3.106 | 0.373 | I | |
子株叶片 | 0.926 | 0.000 | 0.986 9 | 0.815 7 | 1.194 0 | 2.813 | 2.783 | 2.844 | 0.881 | I | |
子株枝条 | 0.890 | 0.000 | 0.921 9 | 0.731 1 | 1.162 4 | 2.835 | 2.764 | 2.905 | 0.455 | I | |
子株树干 | 0.766 | 0.000 | 1.408 0 | 1.008 0 | 1.968 0 | 3.304 | 3.023 | 3.584 | 0.045 | A | |
logN&logP | 母株叶片 | 0.733 | 0.000 | 0.991 3 | 0.694 0 | 1.416 0 | 1.546 | 1.504 | 1.587 | 0.959 | I |
母株枝条 | 0.770 | 0.000 | 0.796 7 | 0.571 7 | 1.110 3 | 1.530 | 1.397 | 1.662 | 0.162 | I | |
母株树干 | 0.618 | 0.002 | 1.048 0 | 0.687 0 | 1.599 0 | 1.566 | 1.309 | 1.822 | 0.814 | I | |
垂直根 | 0.707 | 0.001 | 1.049 0 | 0.723 0 | 1.524 0 | 1.527 | 1.399 | 1.655 | 0.784 | I | |
水平根 | 0.799 | 0.000 | 1.569 0 | 1.150 0 | 2.140 0 | 1.639 | 1.509 | 1.769 | 0.008 | A | |
子株叶片 | 0.689 | 0.001 | 1.199 0 | 0.817 0 | 1.760 0 | 1.559 | 1.483 | 1.635 | 0.324 | I | |
子株枝条 | 0.634 | 0.002 | 1.105 0 | 0.730 0 | 1.672 0 | 1.455 | 1.301 | 1.610 | 0.613 | I | |
子株树干 | 0.685 | 0.001 | 0.880 6 | 0.598 8 | 1.295 1 | 1.428 | 1.225 | 1.632 | 0.489 | I |
Tab.3
The variance contribution rate of C,N and P components and the factor load matrix after rotation analyzed
指标 | 主成分 | 主成分得分 | 排序 | ||||||
---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F1 | F2 | 合计 | |||||
母株叶片 | C | -0.084 | 0.996 | -0.014 6 | 0.044 6 | 0.030 1 | |||
N | -0.191 | -0.982 | 0.002 3 | -0.041 4 | -0.039 1 | 8 | |||
P | -0.986 | -0.165 | -0.041 6 | 0.002 0 | -0.039 6 | ||||
母株枝条 | C | 0.136 | 0.991 | -0.004 8 | 0.042 3 | 0.037 5 | |||
N | -0.977 | -0.211 | -0.040 7 | -0.000 1 | -0.040 8 | 4 | |||
P | 0.994 | -0.107 | 0.044 9 | -0.014 0 | 0.030 9 | ||||
母株树干 | C | 0.998 | 0.068 | 0.043 2 | -0.006 4 | 0.036 8 | |||
N | -0.998 | -0.065 | -0.043 2 | 0.006 5 | -0.036 7 | 6 | |||
P | 0.905 | -0.426 | 0.044 5 | -0.027 3 | 0.017 2 | ||||
垂直根 | C | 0.973 | -0.233 | 0.045 3 | -0.019 4 | 0.025 9 | |||
N | -0.403 | 0.915 | -0.027 7 | 0.044 1 | 0.016 3 | 2 | |||
P | 0.660 | 0.751 | 0.020 9 | 0.026 8 | 0.047 7 | ||||
水平根 | C | 0.940 | 0.342 | 0.037 6 | 0.006 2 | 0.043 8 | |||
N | -0.809 | -0.588 | -0.029 2 | -0.018 3 | -0.047 4 | 7 | |||
P | -0.980 | -0.197 | -0.041 0 | 0.000 6 | -0.040 4 | ||||
子株叶片 | C | 0.255 | 0.967 | 0.000 7 | 0.040 1 | 0.040 8 | |||
N | -0.938 | -0.348 | -0.037 5 | -0.006 5 | -0.043 9 | 3 | |||
P | 0.107 | 0.994 | -0.006 2 | 0.042 7 | 0.036 6 | ||||
子株枝条 | C | -0.285 | 0.958 | -0.023 0 | 0.044 9 | 0.021 8 | |||
N | -0.593 | -0.805 | -0.017 3 | -0.029 8 | -0.047 1 | 5 | |||
P | 0.426 | 0.905 | 0.008 9 | 0.035 8 | 0.044 7 | ||||
子株树干 | C | 0.867 | 0.498 | 0.032 7 | 0.013 7 | 0.046 5 | |||
N | 0.475 | 0.880 | 0.011 3 | 0.034 2 | 0.045 5 | 1 | |||
P | 0.715 | -0.699 | 0.039 1 | -0.037 5 | 0.001 6 | ||||
特征值 | 12.892 | 11.108 | |||||||
方差贡献率/% | 53.715 | 47.285 | |||||||
累积方差贡献率/% | 53.715 | 100.00 |
[1] | Sterner R W, Elser J J. Ecological stonichiometry:The biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2003. |
[2] |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7):682-713.
doi: 10.17521/cjpe.2020.0331 |
[3] | 程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6):1628-1637. |
[4] |
Sardans J, Rivas-Ubach A, Penuelas J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function:A review and perspectives[J]. Biogeochemistry, 2012, 111:1-39.
doi: 10.1007/s10533-011-9640-9 |
[5] | 郭素娟, 谢明明, 张丽, 等. 板栗细根碳、氮、磷化学计量时间变异特征[J]. 植物营养与肥料学报, 2018, 24(3):825-832. |
[6] |
Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8(6):636-642.
doi: 10.1111/ele.2008.8.issue-6 |
[7] |
Güsewell S. N∶P ratios in terrestrial plants:Variation and functional significance[J]. New Phytologist, 2004, 164(2):243-266.
doi: 10.1111/j.1469-8137.2004.01192.x pmid: 33873556 |
[8] |
Wassen M J, Olde Venterink H G M, de Swart E O A M. Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems[J]. Journal of Vegetation Science, 1995, 6(1):5-16.
doi: 10.2307/3236250 |
[9] | 盘金文, 郭其强, 孙学广, 等. 不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J]. 植物营养与肥料学报, 2020, 26(4):746-756. |
[10] |
李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5):453-465.
doi: 10.17521/cjpe.2015.0044 |
[11] |
Yang Xuejun, Huang Zhenying, Zhang Keliang, et al. C∶N∶P stoichiometry of Artemisia species and close relatives across northern China:Unravelling effects of climate,soil and taxonomy[J]. Journal of Ecology, 2015, 103(4):1020-1031.
doi: 10.1111/jec.2015.103.issue-4 |
[12] |
李月灵, 金则新, 罗光宇, 等. 干旱胁迫下接种丛枝菌根真菌对七子花非结构性碳水化合物积累及 C、N、P 化学计量特征的影响[J]. 应用生态学报, 2022, 33(4):963-971.
doi: 10.13287/j.1001-9332.202204.014 |
[13] |
Guan T T Y, Cenkowski S, Hydamaka A. Effect of drying on the nutraceutical quality of sea buckthorn(Hippophae rhamnoides L.ssp. sinensis)leaves[J]. Journal of Food Science, 2005, 70(9):E514-E518.
doi: 10.1111/j.1365-2621.2005.tb08312.x |
[14] |
Kanayama Y, Kato K, Stobdan T, et al. Research progress on the medicinal and nutritional properties of sea buckthorn(Hippophae rhamnoides)-a review[J]. Journal of Horticultural Science and Biotechnology, 2012, 87(3):203-210.
doi: 10.1080/14620316.2012.11512853 |
[15] |
Cao Zilin, Li Tianjiang, Li Genqian, et al. Modular growth and clonal propagation of Hippophae rhamnoides subsp.sinensis in response to irrigation intensity[J]. Journal of Forestry Research, 2016, 27(5):1019-1028.
doi: 10.1007/s11676-016-0236-z |
[16] |
Takahashi M K, Horner L M, Kubota T, et al. Extensive clonal spread and extreme longevity in saw palmetto,a foundation clonal plant[J]. Molecular Ecology, 2011, 20(18):3730-3742.
doi: 10.1111/j.1365-294X.2011.05212.x pmid: 21848843 |
[17] | 唐翠平, 乌拉, 袁思安, 等. 沙棘人工林早衰及其更新复壮[J]. 西北林学院学报, 2014, 30(5):47-52. |
[18] | 张增悦, 姜准, 李甜江, 等. 毛乌素沙地中国沙棘人工林早衰原因与特点[J]. 西北林学院学报, 2016, 31(6):1-6. |
[19] |
Bai Shuangcheng, Nie Kaihong, Ji Shengli, et al. Response of Chinese sea buckthorn clonal growth and photosynthetic physiological mechanisms toward a soil moisture gradient[J]. iForest-Biogeosciences and Forestry, 2021, 14(4):337-343.
doi: 10.3832/ifor3564-014 |
[20] | 聂恺宏, 邹旭, 吉生丽, 等. 中国沙棘克隆生长对灌水强度的响应规律及其激素调控机制[J]. 生态学报, 2018, 38(14):4942-4952. |
[21] | 姜准, 刘丹一, 陈贝贝, 等. 中国沙棘克隆生长对造林密度的早期响应及其生物量分配调节机制[J]. 林业科学, 2017, 53(10):29-39. |
[22] | 田登娟, 白双成, 聂恺宏, 等. 平茬高度对中国沙棘萌枝能力及非结构性碳水化合物积累与分配的影响[J]. 西北植物学报, 2021, 41(4):627-634. |
[23] | 张泽宁, 郭彩云, 郭胜伟, 等. 平茬高度对中国沙棘根蘖能力的影响[J]. 东北林业大学学报, 2021, 49(3):21-25. |
[24] | 蔡年辉, 唐军荣, 车凤仙, 等. 平茬高度对云南松苗木碳氮磷化学计量特征的影响[J]. 生态学杂志, 2021, 41(5):849-857. |
[25] | 杨清平, 陈双林, 郭子武, 等. 摘花和打顶措施对毛竹林下多花黄精块茎生物量积累特征的影响[J]. 南京林业大学学报:自然科学版, 2021, 45(2):165-170. |
[26] |
Meng Peng, Liu Jing, Bai Xuefeng. Selection of tree species by principal component analysis for abandoned farmland in southeastern Horqin Sandy Land,China[J]. Journal of Forestry Research, 2021, 33(2):475-486.
doi: 10.1007/s11676-021-01320-0 |
[27] |
高艳红, 许建伟, 张萌, 等. 中国400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11):1101-1112.
doi: 10.11867/j.issn.1001-8166.2020.087 |
[28] | 苏建华, 王春梅, 庞国伟, 等. 黄土高原切沟空间分布特征[J]. 水土保持研究, 2023, 30(1):134-143. |
[29] | Hidri R, Mahmoud O M B, Debez A, et al. Modulation of C∶N∶P stoichiometry is involved in the effectiveness of a PGPR and AM fungus in increasing salt stress tolerance of Sulla carnosa Tunisian provenances[J]. Applied Soil Ecology, 2019(143):161-172. |
[30] | Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Journal of Ecology letters, 2000, 3(6):540-550. |
[31] | 贺斌. 毛乌素沙地中国沙棘克隆生长对氮磷配施的响应[D]. 昆明: 西南林学院, 2007. |
[32] |
Han Wenxuan, Fang J Y, Reich P B, et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate,soil and plant functional type in China[J]. Ecology Letters, 2011, 14(8):788-796.
doi: 10.1111/j.1461-0248.2011.01641.x pmid: 21692962 |
[33] |
Garrish V, Cernusak L A, Winter K, et al. Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree,Ficus insipida[J]. Journal of Experimental Botany, 2010, 61(13):3735-3748.
doi: 10.1093/jxb/erq183 |
[34] | 张天霖, 邱治军, 吴仲民, 等. 粤北针阔混交林不同器官碳氮磷钾的生态化学计量特征[J]. 林业科学研究, 2021, 34(2):149-157. |
[35] | 董蕾, 李吉跃. 植物干旱胁迫下水分代谢、碳饥饿与死亡机理[J]. 生态学报, 2013, 33(18):5477-5483. |
[36] | 曹子林, 肖智勇, 高辉, 等. 毛乌素沙地土壤理化性质对中国沙棘人工林生长的影响[J]. 西北林学院学报, 2015, 30(2):22-26. |
[37] | 曾诚, 陈贝贝, 肖智勇, 等. 毛乌素沙地土壤水分对中国沙棘人工林稳定性及生产力的影响[J]. 林业资源管理, 2016(1):99-104. |
[38] |
Bréda N, Huc R, Granier A, et al. Temperate forest trees and stands under severe drought:A review of ecophysiological responses,adaptation processes and long-term consequences[J]. Annals of Forest Science, 2006, 63(6):625-644.
doi: 10.1051/forest:2006042 |
[39] | 李根前, 黄宝龙, 唐德瑞, 等. 毛乌素沙地中国沙棘无性系生长调节[J]. 应用生态学报, 2001, 12(5):682-686. |
[40] | 李根前, 唐德瑞, 赵一庆. 沙棘的生物学与生态学特性[J]. 西北植物学报, 2000, 20(5):892-897. |
[41] | 张新时. 毛乌素沙地的生态背景及其草地建设的原则与优化模式[J]. 植物生态学报, 1994,(1):1-16. |
[42] | 苗恒录, 吕志远, 郭克贞, 等. 毛乌素沙地土壤养分空间变异性初步研究[J]. 中国农村水利水电, 2011(8):83-85. |
[1] | YE Peng, TANG Mengping. Analysis of Canopy Density and Crown Overlap of Evergreen Broad-Leaved Forest Based on GIS [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(5): 70-79. |
[2] | WANG Jiaguo, LI Weijie, ZHANG Hongjun, WU Di, ZHANG Jianli, JIA Zhenzhen. Study on the Diversity and Stability of Plant Communities in Baili hododendron Scenic Area in Guizhou Province [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 120-125. |
[3] | ZHANG Jian, LU Fang, SHEN Chen, WANG Guangao, MENG Guoqing, TIAN Jinjin, LUO Feng, CHEN Yihong, QIAN Linna, LIU Meiyan. Study on Cold Resistance of Introduced Evergreen Broad-leaved Tree Species in Xuzhou Region [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 84-89. |
[4] | WANG Jiping, GUO Zhongjun, CHENG Fu, ZHANG Qibin, MA Huan, YU Yilei. Spatio-temporal Change in Precipitation and Surface Temperature and Their Relationships with NDVI of Different Ecological Function Zones in North Xinjiang [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(1): 110-117. |
[5] | ZHAO Jing, ZHOU Yaozhi, DENG Xingyao. Temporal-spatial Dynamic Change Characteristics of Vegetation Coverage in Arid Regions of Northwest China [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(1): 118-126. |
[6] | SHI Yueyue, YIN Zhengtong, ZHENG Wenfeng. Study on the Response of Vegetation Cover Change and Climate Change in Wujiang River Basin Based on MODIS Data [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(1): 127-134. |
[7] | YU Quanzhou, DONG Jie, LIU Enfeng, ZHOU Lei, LIANG Chunling, ZHANG Huaizhen, CAO Jianrong. Analysis on Vegetation Spatio-temporal Variation of Nansi Lake Based on MODIS [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(1): 144-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||