FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (4): 132-140.doi: 10.13466/j.cnki.lyzygl.2023.04.016
• Technical Application • Previous Articles Next Articles
ZOU Weimin1(), CHEN Chao2, HUANG Lei2, SONG Meixuan2, LI Xuejian2, DU Huaqiang2()
Received:
2023-06-14
Revised:
2023-07-15
Online:
2023-08-28
Published:
2023-10-16
CLC Number:
ZOU Weimin, CHEN Chao, HUANG Lei, SONG Meixuan, LI Xuejian, DU Huaqiang. Geographic Weighted Regression Model Combined with Remote Sensing for Estimating Forest Aboveground Carbon Storage of Songyang County[J]. FOREST RESOURCES WANAGEMENT, 2023, (4): 132-140.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.04.016
Tab.1
Remote sensing feature variables
遥感变量类型 | 遥感变量因子 | 参考文献 |
---|---|---|
原始波段 | 蓝光波段(B)、绿光波段(G)、红光波段(R)、近红外波段(NIR)、短波红外1波段(SWIR 1)、短波红外2波段(SWIR 2) | |
植被指数 | 归一化植被指数(Normalized Difference Vegetation Index,NDVI)、增强植被指数(Enhanced Vegetation Index,EVI)、比值植被指数(Ratio Vegetation Index,RVI)、差值植被指数(Difference Vegetable Index,DVI)、归一化水指数(Normalized Difference Water Index,NDWI)、归一化红外指数(Normalized Difference Infrared Index,NDII) | [ |
纹理特征 | 对比度(Contrast,CON)、相关性(Correlation,COR)、相异性(Dissimilarity,DIS)、熵(Entropy,ENT)、方差(Variance,VAR)、均质性(Homogeneity,HOM) | [ |
[1] |
Mao Fangjie, Zhou Guomo, Du Haqiang, et al. Forest biomass carbon sinks in East Asia,with special reference to the relative contributions of forest expansion and forest growth[J]. Global Change Biology, 2014, 20(6):2019-2030.
doi: 10.1111/gcb.12512 |
[2] |
刘腾艳, 毛方杰, 李雪建, 等. 浙江省竹林地上碳储量的时空动态模拟及影响因素[J]. 应用生态学报, 2019, 30(5):1743-1753.
doi: 10.13287/j.1001-9332.201905.035 |
[3] |
Zhang Meng, Du Huaqiang, Zhou Guomo, et al. Estimating forest aboveground carbon storage in Hang-Jia-Hu using landsat TM/OLI data and random forest model[J]. Forests, 2019, 10(11):1004.
doi: 10.3390/f10111004 |
[4] |
Campbell M J, Dennison P E, Kerr K L, et al. Scaled biomass estimation in woodland ecosystems:Testing the individual and combined capacities of satellite multispectral and Lidar data[J]. Remote Sensing of Environment, 2021, 262:112511.
doi: 10.1016/j.rse.2021.112511 |
[5] |
Chang Zhongbing, Hobeichi S, Wang Yingping, et al. New forest aboveground biomass maps of China integrating multiple datasets[J]. Remote Sensing, 2021, 13(15):2892.
doi: 10.3390/rs13152892 |
[6] | 陈庆, 郑征, 冯志立, 等. 云南普洱地区思茅松林生物量及碳储量研究[J]. 云南大学学报:自然科学版, 2014, 36(3):439-445. |
[7] | 刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62-74. |
[8] | 韩雪莲, 张加龙, 刘灵, 等. 基于遥感特征变量的高山松碳储量抽样估算[J]. 西南林业大学学报:自然科学版, 2023, 43(6):1-9. |
[9] |
Du Huaqiang, Zhou Guomo, Ge Hongli, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique[J]. International Journal of Remote Sensing, 2012, 33(6):1917-1933.
doi: 10.1080/01431161.2011.603379 |
[10] | 戚玉娇, 李凤日. 基于KNN方法的大兴安岭地区森林地上碳储量遥感估算[J]. 林业科学, 2015, 51(5):46-55. |
[11] | 张博, 欧光龙, 孙雪莲, 等. 空间效应及其回归模型在林业中的应用[J]. 西南林业大学学报, 2016, 36(3):144-152. |
[12] | 邱新彩, 郑冬梅, 王海宾, 等. 结合地统计学与Landsat 8影像的乔木林地上碳储量估算[J]. 中南林业科技大学学报, 2020, 40(11):138-146. |
[13] |
Wang Jingyi, Du Huaqiang, Li Xuejian, et al. Remote sensing estimation of bamboo forest aboveground biomass based on geographically weighted regression[J]. Remote Sensing, 2021, 13(15):2962.
doi: 10.3390/rs13152962 |
[14] | 王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算[J]. 农业机械学报, 2018, 49(6):184-190. |
[15] | 叶森土, 金超, 吴初平, 等. 浙江松阳县生态公益林群落分类排序及优势种种间关联分析[J]. 浙江农林大学学报, 2020, 37(4):693-701. |
[16] |
Bright B C, Hudak A T, Kennedy R E, et al. Examining post-fire vegetation recovery with andsat time series analysis in three Western North American forest types[J]. Fire Ecology, 2019, 15(1):8.
doi: 10.1186/s42408-018-0021-9 |
[17] | 周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究[J]. 西北林学院学报, 2022, 37(2):186-192. |
[18] | 郭含茹, 张茂震, 徐丽华, 等. 基于地理加权回归的区域森林碳储量估计[J]. 浙江农林大学学报, 2015, 32(4):497-508. |
[19] | 刘伟, 潘永柱, 徐肇友, 等. 百山祖国家公园公益林碳储量及分配特征[J]. 生态学杂志, 2021, 40(1):1-10. |
[20] |
邢晓语, 杨秀春, 徐斌, 等. 基于随机森林算法的草原地上生物量遥感估算方法研究[J]. 地球信息科学学报, 2021, 23(7):1312-1324.
doi: 10.12082/dqxxkx.2021.200605 |
[21] |
McFeeters S K. The use of the Normalized Difference Water Index(NDWI)in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714 |
[22] | 廖瑶, 李雪, 刘芸, 等. 基于植被指数的高分一号遥感影像火烧迹地提取评价[J]. 自然灾害学报, 2021, 30(5):199-206. |
[23] |
Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5):786-804.
doi: 10.1109/PROC.1979.11328 |
[24] |
Dong Luofan, Du Huaqiang, Han Ning, et al. Application of convolutional neural network on Lei Bamboo Above-Ground-Biomass(AGB) estimation using Worldview-2[J]. Remote Sensing, 2020, 12(6):958.
doi: 10.3390/rs12060958 |
[25] |
Wang Nan, Sun Ming, Ye Junhong, et al. Spatial downscaling of forest above-ground biomass distribution patterns based on Landsat 8 OLI images and a multiscale geographically weighted regression algorithm[J]. Forests, 2023, 14(3):526.
doi: 10.3390/f14030526 |
[26] |
孙钰森, 王维芳, 李国春. 基于地理加权回归克里格模型的帽儿山地区森林碳储量空间分布[J]. 应用生态学报, 2019, 30(5):1642-1650.
doi: 10.13287/j.1001-9332.201905.024 |
[27] | 闾妍宇, 李超, 欧光龙, 等. 基于地理加权回归模型的思茅松生物量遥感估测[J]. 林业资源管理, 2017,(1):82-90. |
[28] | 刘畅, 李凤日, 贾炜玮, 等. 基于局域统计量的黑龙江省多尺度森林碳储量空间分布变化[J]. 应用生态学报, 2014, 25(9):2493-2500. |
[29] | 卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报:信息科学版, 2020, 45(9):1356-1366. |
[30] |
Zhang Wei, Liu Dan, Zheng Shengjie, et al. Regional precipitation model based on geographically and temporally weighted regression kriging[J]. Remote Sensing, 2020, 12(16):2547.
doi: 10.3390/rs12162547 |
[31] |
Chen Huafeng, Qin Zihao, Zhai Deli, et al. Mapping forest aboveground biomass with MODIS and Fengyun-3C VIRR imageries in Yunnan province,Southwest China using Linear regression,K-Nearest neighbor and random forest[J]. Remote Sensing, 2022, 14(21):5456.
doi: 10.3390/rs14215456 |
[32] |
Zhang Xiao, Liu Liangyun, Chen Xidong, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J]. Remote Sensing, 2019, 11(9):1056.
doi: 10.3390/rs11091056 |
[33] |
Hu Xisheng, Zhang Lanyi, Ye Limin, et al. Locating spatial variation in the association between road network and forest biomass carbon accumulation[J]. Ecological Indicators, 2017, 73:214-223.
doi: 10.1016/j.ecolind.2016.09.042 |
[34] |
Cao Lin, Coops N C, Sun Yuan, et al. Estimating canopy structure and biomass in bamboo forests using airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148:114-129.
doi: 10.1016/j.isprsjprs.2018.12.006 |
[35] |
Zhang Bo, Li Xuejian, Du Huaqiang, et al. Estimation of urban forest characteristic parameters using UAV-Lidar coupled with canopy volume[J]. Remote Sensing, 2022, 14(24):6375.
doi: 10.3390/rs14246375 |
[1] | WU Sha, BIAN Gengzhan, YI Xuan, LYU Yong. Research and Construction of Stand Form Height Model of Quercus glauca Secondary Forest [J]. Forest and Grassland Resources Research, 2024, 0(1): 134-142. |
[2] | HAO Jun, LYU Kangting, HU Tianqi, WANG Yunge, XU Gang. Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning [J]. Forest and Grassland Resources Research, 2024, 0(1): 65-72. |
[3] | WANG Guilin, TAN Wei, CHEN Botao. Height-diameter Model of Cunninghamia lanceolata Based on Deep Neural Network [J]. Forest and Grassland Resources Research, 2024, 0(1): 82-87. |
[4] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[5] | LIU Yan, NIU Xiang, WANG Bing. Spatial-Temporal Evolution of Habitat Quality and Its Prediction in Luoxiao Mountain Area in the Past 25 Years [J]. Forest and Grassland Resources Research, 2023, 0(6): 39-51. |
[6] | YUAN Yuan, SHENG Yan, LIU Linfu, WANG Shuo, LI Juan, AN Li. Spatial-Temporal Evolution Characteristics and Driving Influence Mechanism of Habitat Quality in Kuye River Basin [J]. Forest and Grassland Resources Research, 2023, 0(6): 67-74. |
[7] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[8] | MENG Xianjin, LIN Shouming, QIN Lin, HUANG Ninghui, DING Sheng, XUE Yadong, LUO Yong, YANG Tingdong. Green and Beautiful Guangdong Ecological Construction Demonstration Zone Digital Twin Application Research [J]. Forest and Grassland Resources Research, 2023, 0(5): 113-121. |
[9] | WU Tingtian, CHEN Yiqing, CHEN Zongzhu, LEI Jinrui, CHEN Xiaohua, LI Yuanling. Analysis on the Spatial Distribution Characteristics of Representative Populations in Tropical Rainforest of Hainan [J]. Forest and Grassland Resources Research, 2023, 0(5): 133-141. |
[10] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[11] | JU Wenzhen, WEI Longbin, PENG Bolin, LI Changcheng, PAN Ting. Study on Driving Factors and Prediction Model of Forest Fire in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 56-62. |
[12] | HE Binyuan, ZENG Rong, DAI Puying, PAN Dan, FANG Yuanyuan, WEI Liquan. Research on the Evaluation and Influencing Factors of High-Quality Development of Forest Cities in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 89-97. |
[13] | ZENG Haowei, LING Chengxing, ZHANG Jun, LIU Hua, ZHAO Feng, JIN Yue, LIU Shuguang, ZHANG Yutong. Habitat Suitability Assessment of Moose Based on Combined MaxEnt and HSI Model [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 115-122. |
[14] | JIAO Quanjun, ZHENG Yanfeng, HUANG Wenjiang, ZHANG Bing, ZHANG Heyi, SHI Yimeng, WU Fayun, FU Anmin. Detection of Discolored Trees Caused by Pine Wilt Disease Based on Vegetation Index Method Using Terrestrial Ecosystem Carbon Inventory Satellite Data [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 123-131. |
[15] | DU Zhi, CHEN Zhenxiong, Li Rui, LUO Chongbin, YANG Guojin, ZENG Weisheng. Development of Tree Height-DBH Model for Cunninghamia lanceolata and Eucalyptus Robusta Based on Stand Dominant Height and Climatic Factors [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 36-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||