[1] |
白夜, 王博, 武英达, 等. 2021年全球森林火灾综述[J]. 消防科学与技术, 2022, 41(5):705-709.
|
[2] |
覃先林, 陈尔学, 李增元, 等. 基于MODIS数据的森林覆盖变化监测方法研究[J]. 遥感技术与应用, 2006(3):178-183.
|
[3] |
张玲玲, 邱建文, 王文江. 气溶胶激光雷达在森林防火中的应用[J]. 焦作大学学报, 2021, 35(4):93-95.
|
[4] |
陈曦, 刘和剑. 自动巡航森林火灾检测小车的设计[J]. 绿色科技, 2016(16):163-166.
|
[5] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations(ICLR), 2015,abs/1409.1556:1-14.
|
[6] |
Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2015, 7298594:1-9.
|
[7] |
He Kaiming, Zhang Xiongyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016, 90:770-778.
|
[8] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016, 91:779-788.
|
[9] |
张倩, 周平平, 王公堂, 等. 基于合成图像的Faster R-CNN森林火灾烟雾检测[J]. 山东师范大学学报:自然科学版, 2019, 34(2):180-185.
|
[10] |
Xue Zhenyang, Lin Haifeng, Wang Fang. A small target forest fire detection model based on YOLOv5 improvement[J]. Forests, 2022, 13(8):1332.
doi: 10.3390/f13081332
|
[11] |
皮骏, 刘宇恒, 李久昊. 基于YOLOv5s的轻量化森林火灾检测算法研究[J]. 图学学报, 2023, 44(1):26-32.
|
[12] |
叶铭亮, 周慧英, 李建军. 基于改进Swin Transformer的森林火灾检测算法[J]. 中南林业科技大学学报, 2022, 42(8):101-110.
|
[13] |
Lin Ji, Lin Haifeng, Wang Fang. STPM_SAHI:A small-target forest fire detection model based on swin transformer and slicing aided hyper inference[J]. Forests, 2022, 13(10):1603.
doi: 10.3390/f13101603
|
[14] |
Wang Chienyao, Bochkovskiy A, Liao Hongyuan. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J/OL]. Computer Science(2022-07-06)[2022-11-21]. https://arxiv.org/abs/2207.02696.arXiv preprint,2022,arXiv:2207.02696.
|
[15] |
Lee Youngwan, Hwang Joongwon, Lee Sangrok, et al. An energy and GPU-computation efficient backbone network for real-time object detection[J/OL]. Computer Science(2019-04-22)[2023-02-21]. https://arxiv.org/abs/1904.09730.arXiv preprint,2019,arXiv:1904.09730.
|
[16] |
Wang Chienyao, Liao Hongyuan, Yeh I-Hau. Designing network design strategies through gradient path analysis[J/OL].(2022-11-09)[2023-2-15]. https://arxiv.org/abs/2211.04800.arXiv preprint,2022,arXiv:2211.04800.
|
[17] |
Ding Xiaohan, Zhang Xiangyu, Ma Ningning. et al. RepVGG:Making GG-style convNets great again[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2021, 01352:13728-13737.
|
[18] |
Raja S, Luo T. No more strided convolutions or pooling:A new CNN building block for low-resolution images and small objects[J/OL]. Computer Science(2022-08-07)[2023-03-02]. https://arxiv.org/abs/2208.03641.arXiv preprint,2022,arXiv:2208.03641.
|
[19] |
Zheng Zhaohui, Wang Ping, Ren Dongwei, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8):8574-8586.
doi: 10.1109/TCYB.2021.3095305
|
[20] |
Tong Zanjia, Chen Yuhang, Xu Zewei, et al. Wise-IoU:Bounding box regression loss with dynamic focusing mechanism[J/OL]. Computer Science(2023-01-24)[2023-04-09]. https://arxiv.org/abs/2301.10051.arXiv preprint,2023,arXiv:2301.10051.
|
[21] |
Hou Qibin, Zhou Daquan, Feng Jiashi, et al. Coordinate attention for efficient mobile network design[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2021, 01350:13708-13717.
|
[22] |
Du Shuangjiang, Zhang Pin, Xiang Pengan, et al. Improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]. 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning(PRML), 2021, 9520717:92-98.
|
[23] |
Hu Jie, Shen Li, Sun Gang, et al. Squeeze-and-Excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 00745:7132-7141.
|