FOREST RESOURCES WANAGEMENT ›› 2019›› Issue (2): 137-141.doi: 10.13466/j.cnki.lyzygl.2019.02.020
• Research Bulletin • Previous Articles Next Articles
GONG Yinting1(), ZHENG Guilian1, REN Zhengxing2
Received:
2019-01-09
Revised:
2019-03-22
Online:
2019-04-28
Published:
2020-09-22
CLC Number:
GONG Yinting, ZHENG Guilian, REN Zhengxing. The Theory and Simulation Studies of Stomatal Conductance at Night[J]. FOREST RESOURCES WANAGEMENT, 2019, (2): 137-141.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2019.02.020
[1] | 袁国富, 庄伟, 罗毅. 冬小麦叶片气孔导度模型水分响应函数的参数化[J]. 植物生态学报, 2012,36(5):463-470. |
[2] | 孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应[J]. 生态学报, 2009,29(2):698-705. |
[3] | 赵平, 刘惠, 孙谷畴. 4种植物气孔对水汽压亏缺敏感度的种间差异[J]. 中山大学学报:自然科学版, 2007,46(4):63-68. |
[4] | Gao Qiong, Zhao Ping, Zeng Xiaoping,et al.A model of stomatal conductance to quantify the relationship between leaf transpiration,microclimate and soil water stress[J]. Plant,Cell and Environment, 2002,25:1373-1381. |
[5] | 高冠龙, 张小由, 常宗强, 等. 植物气孔导度的环境响应模拟及其尺度扩展[J]. 生态学报, 2016,36(6):1-10. |
[6] | 司建华, 冯起, 鱼腾飞, 等. 植物夜间蒸腾及其生态水文效应研究进展[J]. 水科学进展, 2014,25(6):907-914. |
[7] |
Fishier J B, Baldocchi D D, Misson L. What the towers don’t see at night:Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California[J]. Tree Physiology, 2007,27:597-610.
doi: 10.1093/treephys/27.4.597 pmid: 17242001 |
[8] |
Snyder K A, Richards J H, Donovan L A. Night-time conductance in C3 and C4 species:Do plants lose water at night[J]? Journal of Experimental Botany, 2003,54:861-865.
pmid: 12554729 |
[9] |
Dawson T E, Burges S S O, Tu K P,et al.Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007,27:561-575.
doi: 10.1093/treephys/27.4.561 pmid: 17241998 |
[10] |
Bucci S J, Scholz F G, Goldstein G, et al. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species[J]. Tree Physiology, 2004,24:1119-1127.
pmid: 15294758 |
[11] | Baldocchi D. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop:II.CO2 exchange and water use efficiency[J]. Agricultural & Forest Meteorology, 1994,67(3-4):291-321. |
[12] |
Caird M A, Richards J H, Donovan L A. Nighttime stomatal conductance and transpiration in C3 and C4 plants[J]. Plant Physiology, 2007,143:4-10.
doi: 10.1104/pp.106.092940 pmid: 17210908 |
[13] | Novick K A, Oren R, Stoy P C, et al. Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern US:implications for annual fluxes[J]. Agricultural and Forest Meteorology, 2009,149:1491-1504. |
[14] |
Philips N G, Ryan M G, Bond B J, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest[J]. Tree Physiology, 2003,23:237-245.
pmid: 12566259 |
[15] | Loftfield J V G. The behavior of stomata[M]. Carnegie Institution of Washington, 1921. |
[16] | Donovan L A, Richiards J H, Linton M J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials[J]. Ecology, 2003,84:463-470. |
[17] |
Ludwig F, Jewitt R A, Donovan L A. Nutrient and water addition effects on day-and night-time conductance and transpiration in a C3 desert annual[J]. Oecologia, 2006,148:219-225.
pmid: 16456684 |
[18] | Bucci S J, Goldstein G, Meinzer F C, et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees[J]. Trees Structure and Function, 2005,19:296-304. |
[19] |
Domec J C, Scholz F G, Bucci S J, et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species:impact on stomatal control of plant water status[J]. Plant Cell Environ, 2006,29:26-35.
doi: 10.1111/j.1365-3040.2005.01397.x pmid: 17086750 |
[20] |
Scholz F G, Bucci S J, Goldstein G, et al. Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees[J]. Tree Physiology, 2007,27(4):551-9.
doi: 10.1093/treephys/27.4.551 pmid: 17241997 |
[21] |
Barbour M M, Buckley T N. The stomatal response to evaporative demand persists at night in Ricinuscommunis plants with high nocturnal conductance[J]. Plant,Cell and Environment, 2007,30:711-721.
doi: 10.1111/j.1365-3040.2007.01658.x pmid: 17470147 |
[22] |
Daley M J, Phillips N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J]. Tree Physiol, 2006,26:411-419.
doi: 10.1093/treephys/26.4.411 pmid: 16414920 |
[23] |
Kavanagh K L, Pangle R, Schotzko A D. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho[J]. Tree Physiology, 2007,27(4):621-629.
doi: 10.1093/treephys/27.4.621 pmid: 17242003 |
[24] | Donovan L A, Richiards J H, Linton M J. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials[J]. Ecology, 2003,84:463-470. |
[25] |
Dodd A N, Salathia N, Hall A, et al. Plant circadian clocks increase photosynjournal,growth,survival,and competitive advantage[J]. Science, 2005,309:630-633.
doi: 10.1126/science.1115581 pmid: 16040710 |
[26] |
Howard A R, Donovan L A. Helianthus nighttime conductance and transpiration respond to soil water but not nutrient availability[J]. Plant Physiol, 2007,143:145-155.
doi: 10.1104/pp.106.089383 pmid: 17142487 |
[27] | Lasceve G, Leymarie J, Vavasseur A. Alterations in light-induced stomatal opening in a starch-deficient mutant of Arabidopsis thaliana L.deficient in chloroplast phosphoglucomutase activity. Plant Cell Environ, 1997,20:350-358. |
[28] |
Drake P L, Froend R H, Franks P J. Smaller,faster stomata:scaling of stomatal size,rate of response,and stomatalconductance[J]. Journal of Experimental Botany, 2013,64(2):495-505.
doi: 10.1093/jxb/ers347 pmid: 23264516 |
[29] |
Franks P J, Farquhar G D. The mechanical diversity of stomata and its significance in gas-exchange control[J]. Plant Physiology, 2007,143:78-87.
doi: 10.1104/pp.106.089367 pmid: 17114276 |
[30] |
Barbour M M, Cernusak L A, Whitehead D, et al. Nocturnal stomatal conductance and implications for modeling δ18Oof leaf-respired CO2 in temperate tree species[J]. Functional Plant Biology, 2005,32:1107-1121.
doi: 10.1071/FP05118 pmid: 32689205 |
[31] |
Marks C O, Lechowicz M J. The ecological and functional correlates of nocturnal transpiration[J]. Tree Physiology, 2007,27:577-584.
pmid: 17241999 |
[32] |
Grulke N E, Alonso R, Nguyen T, et al. Stomata open at night in pole-sized and mature ponderosa pine:implications for O3 exposure metrics[J]. Tree Physiol, 2004,24:1001-1010.
doi: 10.1093/treephys/24.9.1001 pmid: 15234897 |
[33] |
Zeppel M, Lewis J, Chaszar B, et al. Nocturnal stomatal conductance responses to rising CO2,temperature and drought[J]. New Phytologist, 2012,193:929-938.
doi: 10.1111/j.1469-8137.2011.03993.x pmid: 22150067 |
[34] |
Zeppel M J B, Lewis J D, Medlyn B E, et al. Interactive effects of elevatedCO2and drought on nocturnal water fluxes in Eucalyptus saligna[J]. Tree Physiology, 2011,31:932-944.
doi: 10.1093/treephys/tpr024 pmid: 21616926 |
[35] |
Oren R, Sperry J S, Ewers B E, et al. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in flooded Taxodiumdistichum L.forest:hydraulic and nonhydraulic effects[J]. Oecologia, 2001,126:21-29.
doi: 10.1007/s004420000497 pmid: 28547434 |
[36] | Iritz Z, Lindroth A. Nighttime evaporation from a shortrotation willow stand[J]. J Hydrol, 1994,157:235-245. |
[37] |
Benyon R. Nighttime water use in an irrigated Eucalyptus grandis plantation[J]. Tree Physiology, 1999,19:853-859.
doi: 10.1093/treephys/19.13.853 pmid: 10562402 |
[38] | Ludwig F, Jewitt R A, Donovan L A. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual. Oecologia, 2006,148:219-225. |
[39] | Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London.Series B, 1976,273:593-610. |
[40] | Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynconfproc under different environmental conditions [C]//Progress in Photosynconfproc Research.Dordrecht,Netherlands:MartinusNijhoff Publishers, 1987: 221-224. |
[41] | White D A, Beadle C, Sands P J, et al. Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens:a phenomenological approach[J]. Australian Journal of Plant Physiology, 1999,26:17-27. |
[42] | Noe S M, Giersch C. A simple dynamic model of photosynjournal in oak leaves:coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool[J]. Functional Plant Biology, 2004,31:1196-1204. |
[43] | 叶子飘, 于强. 植物气孔导度的机理模型[J]. 植物生态学报, 2009,33(4):772-782. |
[44] | Leuning R. A critical appraisal of a combined stomatal-photosynjournal model forC3plants[J]. Plant,Cell & Environment, 1995,18:339-355. |
[45] | 周莉, 周广胜, 贾庆宇, 等. 2006. 盘锦湿地芦苇叶片气孔导度的模拟[J]. 气象与环境学报, 22(4):42-46. |
[1] | WU Sha, BIAN Gengzhan, YI Xuan, LYU Yong. Research and Construction of Stand Form Height Model of Quercus glauca Secondary Forest [J]. Forest and Grassland Resources Research, 2024, 0(1): 134-142. |
[2] | WANG Guilin, TAN Wei, CHEN Botao. Height-diameter Model of Cunninghamia lanceolata Based on Deep Neural Network [J]. Forest and Grassland Resources Research, 2024, 0(1): 82-87. |
[3] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[4] | LIU Yan, NIU Xiang, WANG Bing. Spatial-Temporal Evolution of Habitat Quality and Its Prediction in Luoxiao Mountain Area in the Past 25 Years [J]. Forest and Grassland Resources Research, 2023, 0(6): 39-51. |
[5] | YUAN Yuan, SHENG Yan, LIU Linfu, WANG Shuo, LI Juan, AN Li. Spatial-Temporal Evolution Characteristics and Driving Influence Mechanism of Habitat Quality in Kuye River Basin [J]. Forest and Grassland Resources Research, 2023, 0(6): 67-74. |
[6] | REN Xiaoqi, HOU Peng, CHEN Yan. Advances in Remote Sensing Retrieval of Forest Aboveground Biomass [J]. Forest and Grassland Resources Research, 2023, 0(6): 146-158. |
[7] | MENG Xianjin, LIN Shouming, QIN Lin, HUANG Ninghui, DING Sheng, XUE Yadong, LUO Yong, YANG Tingdong. Green and Beautiful Guangdong Ecological Construction Demonstration Zone Digital Twin Application Research [J]. Forest and Grassland Resources Research, 2023, 0(5): 113-121. |
[8] | WU Tingtian, CHEN Yiqing, CHEN Zongzhu, LEI Jinrui, CHEN Xiaohua, LI Yuanling. Analysis on the Spatial Distribution Characteristics of Representative Populations in Tropical Rainforest of Hainan [J]. Forest and Grassland Resources Research, 2023, 0(5): 133-141. |
[9] | BAI Xingwen, HU Sheng, BU Rigude, YANG Fan. Analysis and Research on the Docking Scheme of Forest Stock Data Between Continuous Inventory of Forest Resources and Forest Resource Planning and Design Investigation [J]. Forest and Grassland Resources Research, 2023, 0(5): 142-147. |
[10] | JU Wenzhen, WEI Longbin, PENG Bolin, LI Changcheng, PAN Ting. Study on Driving Factors and Prediction Model of Forest Fire in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 56-62. |
[11] | HE Binyuan, ZENG Rong, DAI Puying, PAN Dan, FANG Yuanyuan, WEI Liquan. Research on the Evaluation and Influencing Factors of High-Quality Development of Forest Cities in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 89-97. |
[12] | ZENG Haowei, LING Chengxing, ZHANG Jun, LIU Hua, ZHAO Feng, JIN Yue, LIU Shuguang, ZHANG Yutong. Habitat Suitability Assessment of Moose Based on Combined MaxEnt and HSI Model [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 115-122. |
[13] | ZOU Weimin, CHEN Chao, HUANG Lei, SONG Meixuan, LI Xuejian, DU Huaqiang. Geographic Weighted Regression Model Combined with Remote Sensing for Estimating Forest Aboveground Carbon Storage of Songyang County [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 132-140. |
[14] | DU Zhi, CHEN Zhenxiong, Li Rui, LUO Chongbin, YANG Guojin, ZENG Weisheng. Development of Tree Height-DBH Model for Cunninghamia lanceolata and Eucalyptus Robusta Based on Stand Dominant Height and Climatic Factors [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 36-42. |
[15] | WANG Wenjun, LI Lianfang, LI Xiaojun, HOU Haixiong, LIU Xian, ZHANG Heyao, GU Meng, ZHOU Dongmei. Research on the Growth Model of a 21-Year-Old Betula alnoides Plantation with Different Planting Densities [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(4): 53-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||