[1] |
庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005, 41(3):129-136.
|
[2] |
郭庆华, 刘瑾, 李玉美, 等. 生物多样性近地面遥感监测:应用现状与前景展望[J]. 生物多样性, 2016, 24(11):1249-1266.
doi: 10.17520/biods.2016059
|
[3] |
Zhao K, Suarez J C, Garcia M, et al. Utility of multitemporal lidar for forest and carbon monitoring:Tree growth,biomass dynamics,and carbon flux[J]. Remote Sensing of Environment, 2018,204,883-897.
|
[4] |
Matasci G, Hermosilla T, Wulder M A, et al. Large-area mapping of Canadian boreal forest cover,height,biomass and other structural attributes using Landsat composites and lidar plots[J]. Remote Sensing of Environment, 2018, 209:90-106.
doi: 10.1016/j.rse.2017.12.020
|
[5] |
曾伟生, 孙乡楠, 王六如, 等. 基于激光雷达数据的东北林区航空林分材积表编制[J]. 林业资源管理, 2021(1):147-155.
|
[6] |
孙忠秋, 高金萍, 吴发云, 等. 基于机载激光雷达点云和随机森林算法的森林蓄积量估测[J]. 林业科学, 2021, 57(8):68-81.
|
[7] |
周蓉, 赵天忠, 吴发云. 依据BP神经网络的机载LiDAR数据估算林分平均高[J]. 东北林业大学学报, 2021, 49(9):60-66.
|
[8] |
黄侃, 于强, 黄华国. 基于机载CCD和ALS伪波形数据的山区地表分类研究[J]. 农业机械学报, 2020, 51(3):201-208.
|
[9] |
黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14.
|
[10] |
Su Y, Guo Q, Jin S, et al. The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9):1660-1664.
doi: 10.1109/LGRS.2020.3005166
|
[11] |
Xie Y, Zhang J, Chen X, et al. Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system[J]. Forest Ecosystems, 2020, 7(1):7-33.
doi: 10.1186/s40663-020-0216-9
|
[12] |
黄旭, 贾炜玮, 王强, 等. 背包式激光雷达的落叶松单木因子提取[J]. 森林工程, 2019, 35(4):14-21.
|
[13] |
Xu D, Wang H, Xu W, et al. LiDAR applications to estimate forest biomass at individual tree scale:Opportunities,challenges and future perspectives[J]. Forests, 2021, 12(5):550.
doi: 10.3390/f12050550
|
[14] |
符国瑷, 冯绍信. 海南五指山森林的垂直分布及其特征[J]. 广西植物, 1995(1):57-69.
|
[15] |
刘迎春, 吴发云, 孙忠秋, 等. 陆地生态系统碳监测卫星多载荷替代数据海南综合试验[J]. 林业资源管理. 2021(4):138-148.
|
[16] |
Zhao X, Guo Q, Su Y, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:79-91.
doi: 10.1016/j.isprsjprs.2016.03.016
|
[17] |
Tao S, Wu F, Guo Q, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 110:66-76.
doi: 10.1016/j.isprsjprs.2015.10.007
|
[18] |
Hyyppä E, Yu X, Kaartinen H, et al. Comparison of backpack,handheld,under-canopy UAV,and above-canopy UAV laser scanning for field reference data collection in boreal forests[J]. Remote Sensing, 2020, 12(20):3327.
doi: 10.3390/rs12203327
|
[19] |
Hyyppä E, Kukko A, Kaijaluoto R, et al. Accurate derivation of stem curve and volume using backpack mobile laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:246-262.
doi: 10.1016/j.isprsjprs.2020.01.018
|
[20] |
Ko C, Lee S, Yim J, et al. Comparison of forest inventory methods at plot-level between a backpack personal laser scanning(BPLS)and conventional equipment in jeju island,South Korea[J]. Forests, 2021, 12(3):308.
doi: 10.3390/f12030308
|
[21] |
Hartley R J L, Jayathunga S, Massam P D, et al. Assessing the potential of backpack-mounted mobile laser scanning systems for tree phenotyping[J]. Remote Sensing, 2022, 14(14):3344.
doi: 10.3390/rs14143344
|