[1] |
郭孝玉. 长白落叶松人工林树冠结构及生长模型研究[D]. 北京:北京林业大学, 2013.
|
[2] |
Lee H, Slatton K C, Roth B E, et al. Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests[J]. International Journal of Remote Sensing, 2010,31(1):117-139.
|
[3] |
李晓靖. 基于高分影像的面向对象分类与单木树冠提取研究[D]. 北京:北京林业大学, 2017.
|
[4] |
刘玉锋, 潘英, 李虎. 基于高空间分辨率遥感数据的天山云杉树冠信息提取研究[J]. 国土资源遥感, 2019,31(4):112-119.
|
[5] |
李永亮, 张怀清, 杨廷栋, 等. 基于自适应神经模糊系统的杉木冠幅估算方法[J]. 林业科学, 2019,55(11):45-51.
|
[6] |
Erfanifard Y, Behnia N, Moosavi V. Tree crown delineation on UltraCam-D aerial imagery with SVM classification technique optimised by Taguchi method in Zagros woodlands[J]. International Journal of Image and Data Fusion, 2014,5(4):300-314.
|
[7] |
Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998,13(4):18-28.
|
[8] |
Wu Bin, Yu Bailang, Wu Qiusheng, et al. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests[J]. International Journal of Applied Earth Observation and Geo Information, 2016,52:82-94.
|
[9] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521(7553):436-444.
doi: 10.1038/nature14539
pmid: 26017442
|
[10] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J] //IEEE Trans Pattern Anal Mach Intell. 2017,39(6):1137-1149.
pmid: 27295650
|
[11] |
Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes(voc)challenge[J]. International Journal of Computer Vision, 2010,88(2):303-338.
|
[12] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
|
[13] |
Girshick R. Fast R-CNN [C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
|
[14] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:2014,1409:1556.
|
[15] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
|
[16] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
|
[17] |
Perez L, Wang J. The effectiveness of data augmentation in image classification using deep learning[J]. arXiv preprint arXiv:2017,1712:04621.
|
[18] |
Deng Jia, Dong Wei, Socher R, et al. Imagenet:A large-scale hierarchical image database [C]//2009 IEEE conference on computer vision and pattern recognition.Ieee, 2009: 248-255.
|
[19] |
Abadi M, Barham P, Chen J, et al. Tensorflow:A system for large-scale machine learning [C]//OSDI'16 Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. 2016: 265-283.
|