FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (1): 115-126.doi: 10.13466/j.cnki.lyzygl.2023.01.014
• Technical Application • Previous Articles Next Articles
PU Tao1,2,3(), WANG Ni4(), GONG Yuhong5, WANG An5
Received:
2022-11-18
Revised:
2023-02-01
Online:
2023-02-28
Published:
2023-05-05
CLC Number:
PU Tao, WANG Ni, GONG Yuhong, WANG An. Tree Species Segmentation Practice based on UAV Imagery[J]. FOREST RESOURCES WANAGEMENT, 2023, (1): 115-126.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.01.014
Tab.1
Proportion of training set and verification set
类别 | 训练集 | 验证集 | 合计 |
---|---|---|---|
香樟叶 | 84 | 21 | 105 |
香樟(Cinnamomum camphora) | 112 | 28 | 140 |
女贞(Ligustrum lucidum) | 205 | 51 | 256 |
龙柏(Sabina chinensis) | 140 | 35 | 175 |
栀子花(Gardenia jasminoides) | 82 | 20 | 102 |
石楠叶 | 128 | 31 | 159 |
石楠(Photinia serratifolia) | 109 | 27 | 136 |
鹤望兰(Strelitzia reginae) | 80 | 20 | 100 |
建筑 | 84 | 20 | 104 |
月桂(Laurus nobilis) | 81 | 20 | 101 |
月桂叶 | 32 | 7 | 39 |
马路 | 111 | 27 | 138 |
裸地 | 84 | 20 | 104 |
湖 | 87 | 21 | 108 |
合计 | 1419 | 348 | 1767 |
Tab.2
Table of classification accuracy of G-ST,VT,and RegNet without enhanced data sets
类别 | VT模型 | G-ST模型 | RegNet模型 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitb/ 16 | Vitb/ 32 | Vitl/ 16 | Vitl/ 32 | Swin_ small | Swin_ base | Swin_ tiny | Swin_ large | RegNetY_ 400MF | RegNetY_ 200MF | RegNetX_ 600MF | ||||||||||
香樟叶 | 0.24 | 0.00 | 0.48 | 0.48 | 0.29 | 0.14 | 0.76 | 0.00 | 0.52 | 0.38 | 0.52 | |||||||||
香樟(Cinnamomum camphora) | 0.18 | 0.00 | 0.11 | 0.36 | 0.32 | 032 | 0.25 | 0.75 | 0.79 | 0.71 | 0.68 | |||||||||
女贞(Ligustrum lucidum) | 1.00 | 0.22 | 0.94 | 0.98 | 0.78 | 0.98 | 1.00 | 0.96 | 0.90 | 0.92 | 0.86 | |||||||||
龙柏(Sabina chinensis) | 0.91 | 0.00 | 0.97 | 0.94 | 0.89 | 0.69 | 0.49 | 0.43 | 0.34 | 0.37 | 0.69 | |||||||||
栀子花(Gardenia jasminoides) | 0.05 | 0.15 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.25 | 0.20 | |||||||||
石楠叶 | 0.65 | 0.48 | 0.26 | 0.23 | 0.55 | 0.26 | 0.58 | 0.61 | 0.61 | 0.74 | 0.65 | |||||||||
石楠(Photinia serratifolia) | 0.19 | 0.00 | 0.37 | 0.37 | 0.70 | 0.85 | 0.85 | 0.19 | 0.04 | 0.04 | 0.04 | |||||||||
鹤望兰(Strelitzia reginae) | 0.40 | 0.00 | 0.45 | 0.35 | 0.45 | 0.30 | 0.05 | 0.30 | 0.20 | 0.25 | 0.15 | |||||||||
建筑 | 0.40 | 0.00 | 0.35 | 0.25 | 0.20 | 0.15 | 0.20 | 0.35 | 0.35 | 0.30 | 0.30 | |||||||||
月桂(Laurus nobilis) | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0.38 | 0.28 | 0.22 | 0.00 | 0.00 | 0.00 | |||||||||
月桂叶 | 0.74 | 0.15 | 0.78 | 0.78 | 0.67 | 0.78 | 0.70 | 0.59 | 0.89 | 0.89 | 0.93 | |||||||||
马路 | 0.20 | 0.00 | 0.50 | 0.70 | 0.50 | 0.65 | 0.40 | 0.25 | 0.50 | 0.60 | 0.35 | |||||||||
裸地 | 0.29 | 0.00 | 0.05 | 0.33 | 0.48 | 0.24 | 0.57 | 0.52 | 0.33 | 0.52 | 0.43 | |||||||||
湖 | 0.80 | 0.40 | 0.80 | 0.95 | 0.95 | 0.85 | 0.80 | 0.75 | 1.00 | 1.00 | 1.00 | |||||||||
总分类精度 | 0.52 | 0.12 | 0.51 | 0.56 | 0.55 | 0.52 | 0.55 | 0.49 | 0.53 | 0.56 | 0.56 | |||||||||
平均分类精度 | 0.43 | 0.10 | 0.44 | 0.48 | 0.48 | 0.44 | 0.51 | 0.41 | 0.47 | 0.50 | 0.49 | |||||||||
Kappa系数 | 0.47 | 0.05 | 0.46 | 0.51 | 0.51 | 0.47 | 0.48 | 0.43 | 0.49 | 0.51 | 0.51 | |||||||||
运行时间/s | 30 | 25 | 50 | 28 | 25 | 30 | 24 | 40 | 26 | 23 | 22 |
Tab.3
G-ST,VT,and RegNet classification accuracies for the augmented datasets with transfer learning added
类别 | VT模型 | G-ST模型 | RegNet模型 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitb/ 16 | Vitb/ 32 | Vitl/ 16 | Vitl/ 32 | Swin_ small | Swin_ base | Swin_ tiny | Swin_ large | RegNetY_ 400MF | RegNetY_ 200MF | RegNetX_ 600MF | ||||||||||
香樟叶 | 0.95 | 0.86 | 1.00 | 0.86 | 1.00 | 0.95 | 1.00 | 1.00 | 0.95 | 1.00 | 0.95 | |||||||||
香樟(Cinnamomum camphora) | 0.82 | 0.71 | 0.93 | 0.93 | 0.93 | 0.93 | 0.96 | 1.00 | 0.96 | 0.96 | 0.96 | |||||||||
女贞(Ligustrum lucidum) | 0.94 | 0.98 | 0.98 | 1.00 | 0.96 | 0.98 | 1.00 | 0.98 | 0.92 | 0.94 | 1.00 | |||||||||
龙柏(Sabina chinensis) | 0.86 | 0.83 | 0.97 | 0.89 | 0.97 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||||
栀子花(Gardenia jasminoides) | 1.00 | 0.75 | 0.95 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||||
石楠叶 | 0.94 | 0.87 | 0.97 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.94 | 0.90 | |||||||||
石楠(Photinia serratifolia) | 0.74 | 0.85 | 0.89 | 0.78 | 0.85 | 0.96 | 0.85 | 0.93 | 0.96 | 0.93 | 0.93 | |||||||||
鹤望兰(Strelitzia reginae) | 0.75 | 0.85 | 1.00 | 0.75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | |||||||||
建筑 | 0.90 | 0.96 | 0.95 | 0.95 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||||
月桂(Laurus nobilis) | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | 0.43 | 0.71 | 0.714 | 0.13 | 0.00 | 0.14 | |||||||||
月桂叶 | 0.70 | 0.85 | 1.00 | 0.78 | 1.00 | 1.00 | 0.96 | 1.00 | 1.00 | 1.00 | 1.00 | |||||||||
马路 | 0.70 | 0.80 | 0.80 | 0.70 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.90 | 1.00 | |||||||||
裸地 | 0.81 | 0.81 | 0.91 | 0.86 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | 0.91 | |||||||||
湖 | 0.95 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | 0.85 | |||||||||
总分类精度 | 0.84 | 0.84 | 0.93 | 0.86 | 0.97 | 0.97 | 0.98 | 0.99 | 0.97 | 0.95 | 0.95 | |||||||||
平均分类精度 | 0.79 | 0.79 | 0.88 | 0.81 | 0.97 | 0.95 | 0.96 | 0.97 | 0.96 | 0.91 | 0.90 | |||||||||
Kappa系数 | 0.82 | 0.82 | 0.93 | 0.85 | 0.97 | 0.97 | 0.98 | 0.98 | 0.97 | 0.95 | 0.94 | |||||||||
运行时间/s | 23 | 20 | 46 | 28 | 20 | 23 | 19 | 34 | 21 | 17 | 16 |
[1] | 戴鹏钦, 丁丽霞, 刘丽娟, 等. 基于FCN的无人机可见光影像树种分类[J]. 激光与光电子学进展, 2020, 57(10):36-45. |
[2] | 欧阳光, 荆林海, 阎世杰, 等. 基于卷积神经网络的高分遥感影像单木树种分类[J]. 激光与光电子学进展, 2021, 58(2):349-362. |
[3] |
Xi Yanbiao, Tian Jia, Jiang Hailing, et al. Mapping tree species in natural and planted forests using Sentinel-2 images[J]. Remote Sensing Letters, 2022, 13(6):544-555.
doi: 10.1080/2150704X.2022.2051636 |
[4] |
He Zhi, He Dan. Bilinear squeeze-and-excitation network for fine-grained classification of tree species[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7):1139-1143.
doi: 10.1109/LGRS.2020.2994952 |
[5] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6):873-884. |
[6] | 滕文秀, 王妮, 施慧慧, 等. 结合面向对象和深度特征的高分影像树种分类[J]. 测绘通报, 2019(4):38-42. |
[7] |
Deur M, Gasparovic M, Balenovici. An evaluation of Pixel-and object-based tree species classification in mixed deciduous forests using pansharpened very high spatial resolution satellite imagery[J]. Remote Sensing, 2021, 13(10):1868.
doi: 10.3390/rs13101868 |
[8] |
Schieffr F, Kattenborn T, Frick A, et al. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170:205-215.
doi: 10.1016/j.isprsjprs.2020.10.015 |
[9] | He Xin, Zhou Yong, Zhao Jiaqi, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. |
[10] | 滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7):277-286. |
[11] |
Qin Haiming, Zhou Weiqi, Yao Yang, et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR,hyperspectral,and ultrahigh-resolution RGB data[J]. Remote Sensing of Environment, 2022, 280:113143.
doi: 10.1016/j.rse.2022.113143 |
[12] | 夏爱梅, 聂乐群. 安徽植被带的划分[J]. 武汉植物学研究, 2004(6):523-528. |
[13] |
Kawamura K, Asai H, Yasuda T, et al. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm[J]. Plant Production Science, 2021, 24(2):198-215.
doi: 10.1080/1343943X.2020.1829490 |
[14] |
Homan D, Du Preez J A. Automated feature-specific tree species identification from natural images using deep semi-supervised learning[J]. Ecological Informatics, 2021, 66:101475.
doi: 10.1016/j.ecoinf.2021.101475 |
[15] | 赵霖, 张晓丽, 吴艳双, 等. 面向机载高光谱数据的3D-CNN亚热带森林树种分类[J]. 林业科学, 2020, 56(11):97-107. |
[16] | Zhang Cheng, Jiang Wanshou, Zhang Yuan, et al. Transformer and CNN hybrid deep neural network for semantic segmentation of Very-High-Resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-20. |
[17] | Huang Xin, Dong Mengjie, Li Jiayi, et al. A 3-D-Swin Transformer-Based hierarchical contrastive learning method for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-15. |
[18] |
Tu Jingzhi, Mei Gang, Ma Zhengjing, et al. SWCGAN:Generative adversarial network combining swin transformer and CNN for remote sensing image Super-Resolution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:5662-5673.
doi: 10.1109/JSTARS.2022.3190322 |
[19] |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM:Visual explanations from deep networks via Gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
doi: 10.1007/s11263-019-01228-7 |
[20] |
Su Hongjun, Yao Wenjing, Wu Zhaoyu, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:238-252.
doi: 10.1016/j.isprsjprs.2020.11.018 |
[1] | WANG Ao, WANG Chenghu, GAO Guiyun, WANG Mingyu. Analysis of Dominant Causes and Rescue Casualties of Forest Fires in China from 2000 to 2022 [J]. Forest and Grassland Resources Research, 2024, 0(1): 1-7. |
[2] | WU Sha, BIAN Gengzhan, YI Xuan, LYU Yong. Research and Construction of Stand Form Height Model of Quercus glauca Secondary Forest [J]. Forest and Grassland Resources Research, 2024, 0(1): 134-142. |
[3] | ZHANG Fanglan, WU Shaozhong, XU Jianhui, SHA Linhua, LI Zhaojia, FANG Fazhi. Effects of Different Crown Density of Hevea brasiliensis Plantations on the Growth Characteristics of Aquilaria sinensis Saplings under Interplanting [J]. Forest and Grassland Resources Research, 2024, 0(1): 143-150. |
[4] | LI Jiao, WANG Bing, WANG Chen, GAO He, WU Huilong, ZHENG Xin, PENG Huafu. Spatiotemporal Trends and Influencing Factors of Forest Carbon Stock in Jiangxi Province from 2005 to 2020 [J]. Forest and Grassland Resources Research, 2024, 0(1): 17-24. |
[5] | LI Huijie, LI Wanting, WANG Bing, NIU Xiang, LIANG Yongliang, LI Jingyao. Assessment of Ecosystem Services in Helan Mountain National Nature Reserve in Ningxia [J]. Forest and Grassland Resources Research, 2024, 0(1): 25-33. |
[6] | LI Shuhui, WU Yan, SUN Zhidong, WANG Cai, LIAO Lili, CHEN Ji'en, XIAO Xuejun, SHEN Junhua. Bark Fire Resistance of 6 Tree Species Based on Entropy Weight Method [J]. Forest and Grassland Resources Research, 2024, 0(1): 41-47. |
[7] | WU Hao, MA Yongsheng, WANG Tianhui, Hezierhan , WANG Shengqi, XUE Yadong, LI Jia. Diversity of Mammals and Birds in the Water Sources of An’nanba Wild Camel National Nature Reserve in Gansu Province [J]. Forest and Grassland Resources Research, 2024, 0(1): 48-55. |
[8] | TANG Jiajun, CHAI Zongzheng. Remote Sensing Estimation of Average Diameter at Breast Height of Forest Stands Based on Airborne LiDAR and Machine Learning Algorithms [J]. Forest and Grassland Resources Research, 2024, 0(1): 56-64. |
[9] | HAO Jun, LYU Kangting, HU Tianqi, WANG Yunge, XU Gang. Remote Sensing Inversion of Mangrove Biomass Based on Machine Learning [J]. Forest and Grassland Resources Research, 2024, 0(1): 65-72. |
[10] | GENG Songtao, SUN Kexin, SONG Liangan, YAN Rong. The Franchising Development Path of the Hainan Tropical Rainforest National Park Based on the Recreation Opportunity Spectrum [J]. Forest and Grassland Resources Research, 2024, 0(1): 8-16. |
[11] | ZHU Zan, WANG Yongjun, WANG Jianqi, XU Yulan, QIU Xinqi, WAN Xi. Construction of a Carbon Storage Measurement Model for Eucalyptus Canopy in Guangxi Based on Drone Oblique Photography [J]. Forest and Grassland Resources Research, 2024, 0(1): 88-94. |
[12] | LU Yuan, WANG Guangyu, CHENG Ziyue, YAN Yuqian, ZHANG Heng, WANG Li, YANG Hui, ZOU Quancheng. Current Situation and Outlook of the Construction of Forest and Grassland Fire Prevention Infrastructure under the New Situation [J]. Forest and Grassland Resources Research, 2023, 0(6): 1-7. |
[13] | LI Qing, GOU Lihui, ZHENG Qianhui, YANG Yu, XIA Chaozong. Research on Pathways and Strategies for the Value Realization of Forest,Grassland and Wetland Carbon Sink Products [J]. Forest and Grassland Resources Research, 2023, 0(6): 18-26. |
[14] | WANG Wenqi, MEI Yuntian, CHEN Jiayu, ZOU Quancheng, SU Yang. Research and Empirical Analysis of Farmers' Forest Land Transfer Behavior from the Perspective of Social Embeddedness [J]. Forest and Grassland Resources Research, 2023, 0(6): 27-38. |
[15] | LIU Yan, NIU Xiang, WANG Bing. Spatial-Temporal Evolution of Habitat Quality and Its Prediction in Luoxiao Mountain Area in the Past 25 Years [J]. Forest and Grassland Resources Research, 2023, 0(6): 39-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||