FOREST RESOURCES WANAGEMENT ›› 2023›› Issue (4): 141-149.doi: 10.13466/j.cnki.lyzygl.2023.04.017
• Technical Application • Previous Articles Next Articles
LIU Hongsheng1(), OUYANG Wenxin2, WEI Yingjie2, XIE Yiqiu3, LI Jianjun2()
Received:
2023-06-29
Revised:
2023-07-17
Online:
2023-08-28
Published:
2023-10-16
CLC Number:
LIU Hongsheng, OUYANG Wenxin, WEI Yingjie, XIE Yiqiu, LI Jianjun. Research on Inversion of Combustible Moisture Content in the Pinus Tabulaeformis Canopy Based on Sentinel-2B[J]. FOREST RESOURCES WANAGEMENT, 2023, (4): 141-149.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lyzygl.2023.04.017
Tab.6
Pinus tabulaeformis FMC quadratic polynomial regression model
自变量因子 | 二次多项式回归模型 | R2 | RMSE | F |
---|---|---|---|---|
B4 | y=0.445+18.453x2-3.44x | 0.748 | 0.013 | 0 |
NDVI | y=0.115-0.101x2+0.372x | 0.780 | 0.012 | 0 |
RVI | y=0.219-0.001x2+0.024x | 0.770 | 0.013 | 0 |
SAVI | y=0.032-0.998x2+1.135x | 0.633 | 0.016 | 0 |
NDWI | y=0.258-0.261x2+0.362x | 0.711 | 0.014 | 0 |
Y | y=0.207-0.001x2+0.024x | 0.779 | 0.013 | 0 |
[1] |
Sandra D, Hector A, Wardle D A. Biodiversity in forest carbon sequestration initiatives:Not just a side benefit[J]. Current Opinion in Environmental Sustainability, 2009, 1(1):55-60.
doi: 10.1016/j.cosust.2009.08.001 |
[2] |
Yang Xiguang, Yu Ying, Hu Haiqing, et al. Moisture content estimation of forest litter based on remote sensing data[J]. Environmental monitoring and assessment, 2018, 190:1-10.
doi: 10.1007/s10661-017-6336-1 |
[3] |
Wu Chao, Venevsky S, Sitch S, et al. Present-day and future contribution of climate and fires to vegetation composition in the boreal forest of China[J]. Ecosphere, 2017, 8(8):e01917.
doi: 10.1002/ecs2.2017.8.issue-8 |
[4] |
Mohajane M, Costache R, Karimi F, et al. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area[J]. Ecological Indicators, 2021, 129:107869.
doi: 10.1016/j.ecolind.2021.107869 |
[5] |
Moritz M A, Batllori E, Bradstock R A, et al. Learning to coexist with wildfire[J]. Nature, 2014, 515:58-66.
doi: 10.1038/nature13946 |
[6] | 王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010. |
[7] |
Loehman R A, Reinhardt E, Riley K L. Wildland fire emissions,carbon,and climate:Seeing the forest and the trees-A cross-scale assessment of wildfire and carbon dynamics in fire-prone,forested ecosystems[J]. Forest Ecology and Management, 2014, 317:9-19.
doi: 10.1016/j.foreco.2013.04.014 |
[8] | 全兴文, 何彬彬, 刘向茁, 等. 多模型耦合下的植被冠层可燃物含水率遥感反演[J]. 遥感学报, 2019, 23(1):62-77. |
[9] | 张志, 许文浩. 澳大利亚 2019—2020 森林火灾对我国应急管理体系建设的启示[J]. 中国应急救援, 2020(2):18-22. |
[10] | 赵月. 基于无人机的林火监测系统设计与实现[D]. 济南: 山东大学, 2019. |
[11] | 刘昕, 邸雪颖. 三种方法对森林地表可燃物含水率的预测评价[J]. 森林工程, 2013, 29(2):8-13. |
[12] | 孙龙, 刘祺, 胡同欣. 森林地表死可燃物含水率预测模型研究进展[J]. 林业科学, 2021, 57(4):142-152. |
[13] | 李海洋, 胡海清, 孙龙. 我国森林死可燃物含水率与气象和土壤因子关系模型研究[J]. 森林工程, 2016, 32(3):1-6. |
[14] |
Gao Bocai. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3 |
[15] |
Ceccato P, Gobron N, Flasse S, et al. Designing a spectral index to estimate vegetation water content from remote sensing data:Part 1 theoretical approach[J]. Remote Sensing of Environment, 2002, 82(2-3):188-197.
doi: 10.1016/S0034-4257(02)00037-8 |
[16] | 王长青. 结合Sentinel-1B和Landsat8 OLI数据的针叶林冠层叶片含水量反演研究[D]. 哈尔滨: 东北林业大学, 2018. |
[17] | 刘曦, 金森. 平衡含水率法预测死可燃物含水率的研究进展[J]. 林业科学, 2007(12):126-133. |
[18] | 张恒, 刘鑫源, 李星汉, 等. 我国气象要素回归法预测地表可燃物含水率研究进展[J]. 森林防火, 2018(3):25-31. |
[19] |
Luo Ke, Wei Yufeng, Du Jie, et al. Machine learning-based estimates of aboveground biomass of subalpine forests using Landsat 8 OLI and Sentinel-2B images in the Jiuzhaigou National Nature Reserve,Eastern Tibet Plateau[J]. Journal of Forestry Research, 2022, 33(4):1329-1340.
doi: 10.1007/s11676-021-01421-w |
[20] | 冯舒芮, 成莉莉, 张珊珊, 等. 崇礼区森林植被和乔木生长的空间变化[J]. 中央民族大学学报:自然科学版, 2023, 32(2):5-9. |
[21] | 郜鹏, 赵海明, 解旭东, 等. 崇礼冬奥风景廊道生态修复数字监测体系构建[J]. 现代园艺, 2023, 46(8):151-153. |
[22] | 李贾, 兰岚, 张佐忠, 等. 基于深度学习的森林可燃物含水率反演技术[J]. 林业科学, 2022, 58(10):47-58. |
[23] | Maffei C, Leone A P, Vella M, et al. Retrieval of vegetation moisture indicators for dynamic fire risk assessment with simulated MODIS radiance[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium,Barcelona,Spain, 2007:4648-4651. |
[24] |
张峰, 周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5):517-525.
doi: 10.17521/cjpe.2017.0313 |
[25] | 陈宗杰, 杨武年, 张琬琳, 等. 基于植被冠层含水量反演数据的森林易燃程度评价[J]. 测绘通报, 2023, 553(4):99-105. |
[26] |
Argañaraz J P, Landi M A, Bravo S J, et al. Estimation of live fuel moisture content from MODIS images for fire danger assessment in southern Gran Chaco[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(12):5339-5349.
doi: 10.1109/JSTARS.4609443 |
[27] |
Yebra M, Chuvieco E, Riaño D. Estimation of live fuel moisture content from MODIS images for fire risk assessment[J]. Agricultural and Forest Meteorology, 2008, 148(4):523-536.
doi: 10.1016/j.agrformet.2007.12.005 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||