Forest and Grassland Resources Research ›› 2023›› Issue (5): 56-62.doi: 10.13466/j.cnki.lczyyj.2023.05.007
• Scientific Research • Previous Articles Next Articles
JU Wenzhen(), WEI Longbin(), PENG Bolin, LI Changcheng, PAN Ting
Received:
2023-08-14
Revised:
2023-10-14
Online:
2023-10-28
Published:
2023-12-20
CLC Number:
JU Wenzhen, WEI Longbin, PENG Bolin, LI Changcheng, PAN Ting. Study on Driving Factors and Prediction Model of Forest Fire in Guangxi[J]. Forest and Grassland Resources Research, 2023, (5): 56-62.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2023.05.007
Tab.1
Fitting results of Logistic regression model
变量 | 显著度 | 显著 次数 | 相关性 | |
---|---|---|---|---|
Pmin | Pmax | |||
可燃物载量 | <0.001 | <0.001 | 5 | + |
海拔 | <0.001 | <0.001 | 5 | - |
坡度 | <0.001 | <0.001 | 5 | - |
林区建筑物数量 | <0.001 | <0.001 | 5 | + |
林区人口数量 | 0.29 | <0.01 | 4 | + |
林区经济 | 0.19 | 0.05 | 1 | + |
月平均降雨量 | <0.001 | <0.001 | 5 | - |
月平均相对湿度 | <0.001 | <0.001 | 5 | - |
月平均气温 | 0.02 | <0.001 | 5 | - |
月平均风速 | <0.001 | <0.001 | 5 | + |
月大风天数 | <0.01 | <0.001 | 5 | - |
Tab.2
Fitting results of the optimal Logistic regression model
变量 | 估计值 | 标准误 | P |
---|---|---|---|
截距 | 0.182 6 | 0.033 3 | <0.001*** |
林区建筑数量 | 1.417 3 | 0.090 2 | <0.001*** |
海拔 | -0.612 1 | 0.037 5 | <0.001*** |
月平均相对湿度 | -0.455 0 | 0.040 2 | <0.001*** |
月平均降雨量 | -0.444 2 | 0.045 2 | <0.001*** |
月平均风速 | 0.364 8 | 0.034 2 | <0.001*** |
坡度 | -0.317 1 | 0.033 4 | <0.001*** |
可燃物载量 | 0.272 1 | 0.033 2 | <0.001*** |
林区人口数量 | 0.244 5 | 0.082 3 | 0.003 0** |
月大风天数 | -0.135 1 | 0.031 9 | <0.001*** |
月平均气温 | -0.085 0 | 0.038 8 | 0.028 7* |
Tab.3
Factors importance ranking
Logistic回归模型 | RF模型 | SVM模型 | BP神经网络模型 |
---|---|---|---|
林区建筑物数量 | 林区建筑物数量 | 月平均降雨量 | 林区建筑物数量 |
海拔 | 月平均降雨量 | 月平均相对湿度 | 可燃物载量 |
月平均相对湿度 | 海拔 | 林区建筑物数量 | 月平均降雨量 |
月平均降雨量 | 坡度 | 月平均气温 | 坡度 |
月平均风速 | 林区人口数量 | 坡度 | 月平均相对湿度 |
坡度 | 月平均气温 | 海拔 | 林区人口数量 |
可燃物载量 | 月平均相对湿度 | 可燃物载量 | 月大风天数 |
林区人口数量 | 可燃物载量 | 林区人口数量 | 海拔 |
月大风天数 | 月平均风速 | 月平均风速 | 月平均气温 |
月平均气温 | 月大风天数 | 月大风天数 | 月平均风速 |
Tab.5
Probability distribution of forest fire occurrence in Guangxi
设区市 | 林火发生概率 | 设区市 | 林火发生概率 | ||||
---|---|---|---|---|---|---|---|
最小值 | 平均值 | 最大值 | 最小值 | 平均值 | 最大值 | ||
南宁市 | 0.172 | 0.485 | 0.870 | 贵港市 | 0.190 | 0.432 | 0.988 |
柳州市 | 0.166 | 0.539 | 0.874 | 玉林市 | 0.156 | 0.392 | 0.942 |
桂林市 | 0.158 | 0.573 | 0.910 | 百色市 | 0.348 | 0.765 | 0.972 |
梧州市 | 0.344 | 0.586 | 0.798 | 贺州市 | 0.208 | 0.602 | 0.900 |
北海市 | 0.208 | 0.367 | 0.584 | 河池市 | 0.264 | 0.742 | 0.966 |
防城港市 | 0.290 | 0.534 | 0.862 | 来宾市 | 0.238 | 0.540 | 0.836 |
钦州市 | 0.256 | 0.441 | 0.902 | 崇左市 | 0.292 | 0.728 | 0.958 |
[1] | 翟杰休, 李勇, 张博, 等. 世界主要林火多发国家的森林火灾与雷击火概况分析[J]. 亚热带资源与环境学报, 2022, 17(4):72-79. |
[2] | 杜秋洋, 杨传杰, 张国琛, 等. 云南省森林火灾发生驱动因子分析及火险区域划分[J]. 森林防火, 2022, 40(1):10-14. |
[3] | 舒立福, 张小罗, 戴兴安, 等. 林火研究综述(Ⅱ)——林火预测预报[J]. 世界林业研究, 2003(4):34-37. |
[4] |
Turco M, Llasat M C, Hardenberg J, et al. Impact of climate variabi-lity on summer fires in a Mediterranean environment(northeastern Iberian Peninsula)[J]. Climatic Change, 2013, 116(3/4):665-678.
doi: 10.1007/s10584-012-0505-6 |
[5] | 潘登, 郁培义, 吴强. 基于气象因子的随机森林算法在湘中丘陵区林火预测中的应用[J]. 西北林学院学报, 2018, 33(3):169-177. |
[6] | 陈岱. 基于Logistic回归模型的大兴安岭林火预测研究[J]. 林业资源管理, 2019(1):116-122. |
[7] |
Ganteaume A, Camia A, Marielle J, et al. A review of the main driving factors of forest fire ignition over Europe[J]. Environmental management, 2013, 51(3):651-652.
doi: 10.1007/s00267-012-9961-z pmid: 23086400 |
[8] |
曾爱聪, 蔡奇均, 苏漳文, 等. 基于MODIS卫星火点的浙江省林火季节变化及驱动因子[J]. 应用生态学报, 2020, 31(2):399-406.
doi: 10.13287/j.1001-9332.202002.015 |
[9] |
Pan Jinghu, Wang Weiguo, Li Junfeng. Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province,China[J]. Natural Hazards, 2016, 81(3):1879-1899.
doi: 10.1007/s11069-016-2160-0 |
[10] |
Guo Futao, Wang Guangyu, Su Zhangwen, et al. What drives forest fire in Fujian,China? Evidence from logistic regression and Random Forests[J]. International Journal of Wildland Fire, 2016, 25(5):505-519.
doi: 10.1071/WF15121 |
[11] | 梁慧玲, 孙锋锋, 丁桂芹. 基于随机森林算法的福建林火发生驱动因子分析[J]. 信息系统工程, 2019(9):146-148. |
[12] |
蔡霁初, 邱建秀, 王大刚, 等. 基于土壤水分和气象要素的林火预报研究——以广东省为例[J]. 地理科学, 2021, 41(9):1676-1686.
doi: 10.13249/j.cnki.sgs.2021.09.019 |
[13] |
朱馨, 李建微, 郭伟, 等. 基于机器学习的森林火险预测模型[J]. 中国安全科学学报, 2022, 32(9):152-157.
doi: 10.16265/j.cnki.issn1003-3033.2022.09.2729 |
[14] | 许志卿, 苏喜友, 张颐. 基于支持向量机方法的森林火险预测研究[J]. 中国农学通报, 2012, 28(13):126-131. |
[15] | 李永和, 靳全锋. 浙江省林火时空变化及影响因子分析[J]. 浙江林业科技, 2021, 41(4):62-69. |
[16] | 张运林, 田玲玲, 丁波, 等. 贵州省林火发生驱动因子及预测模型[J/OL]. 生态学杂志:1-12 [2023-08-24]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230706.0957.002.html. |
[17] | 苏宗明. 广西植被[M]. 北京: 中国林业出版社, 2014. |
[18] | 崔伟东, 周志华, 李星. 支持向量机研究[J]. 计算机工程与应用, 2001(1):58-61. |
[19] | 王亚琴, 王耀力, 郭学斌, 等. 基于直连BP神经网络模型的森林火险预测[J]. 森林防火, 2018(2):41-45. |
[20] | 王姊辉, 董恒, 赵洋甬, 等. 应用机器学习模型对中国云贵川区域林火风险预测[J]. 东北林业大学学报, 2023, 51(5):113-119. |
[21] |
Chang Yu, Zhu Zhiliang, Bu Rencang, et al. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province,China[J]. Landscape Ecology, 2013, 28:1989-2004.
doi: 10.1007/s10980-013-9935-4 |
[22] |
Guo Futao, Zhang Lianjun, Jin Sen, et al. Modeling anthropogenic fire occurrence in the boreal forest of China using logistic regression and random forests[J]. Forests, 2016, 7(11):250.
doi: 10.3390/f7110250 |
[23] | 李晓炜, 赵刚, 于秀波, 等. 不同区域森林火灾对生态因子的响应及其概率模型[J]. 生态学报, 2013, 33(4):1219-1229. |
[24] | 银洁琼, 张贵. 湖南省森林火灾应急资源规模测度指标体系研究[J]. 湖南林业科技, 2012, 39(3):30-32. |
[25] | 黄宝华, 孙治军, 周利霞, 等. 一种森林火险预报方法研究——以山东省为例[J]. 地理信息世界, 2012, 10(3):40-46. |
[26] | 顾先丽, 吴志伟, 张宇婧, 等. 气候变化背景下江西省林火空间预测[J]. 生态学报, 2020, 40(2):667-677. |
[27] |
Guo Futao, Su Zhangwen, Wang Guangyu, et al. Wildfire ignition in the forests of southeast China:Identifying drivers and spatial distribution to predict wildfire likelihood[J]. Applied Geography, 2016, 66:12-21.
doi: 10.1016/j.apgeog.2015.11.014 |
[28] | 田超, 苏漳文, 杨夏捷, 等. 福建西部地区林火发生格局及驱动因子分析[J]. 森林与环境学报, 2017, 37(1):88-94. |
[29] | 周义峰. 四川省甘孜州林火分布格局及预测模型研究[D]. 成都: 成都理工大学, 2021. |
[30] | Guo Futao, Su Zhangwen, Wang Guangyu, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Science of the Total Environment, 2017, 605:411-425. |
[31] | 高超, 林红蕾, 胡海清, 等. 基于气象因子的黑龙江黑河林火发生概率预测[J]. 森林与环境学报, 2022, 42(5):529-535. |
[32] | 李艳兰, 李妍君, 丘平珠, 等. 1961—2020年广西冬季旅游高影响天气的变化特征[J]. 气象研究与应用, 2022, 43(2):45-51. |
[33] | 赵飞, 潘静, 于潇, 等. 钦州港海域大风日数时空分布特征分析[J]. 气象研究与应用, 2018, 39(3):26-29. |
[34] | 朱政, 赵璠, 王秋华, 等. 林火发生预报模型研究进展[J]. 世界林业研究, 2022, 35(3):26-31. |
[1] | HE Binyuan, ZENG Rong, DAI Puying, PAN Dan, FANG Yuanyuan, WEI Liquan. Research on the Evaluation and Influencing Factors of High-Quality Development of Forest Cities in Guangxi [J]. Forest and Grassland Resources Research, 2023, 0(5): 89-97. |
[2] | GAO Yangyang, HUANG Ying, HUANG Yang, TANG Wenxiu, HUANG Shixun, DENG Tao. Comprehensive Evaluation of Plant Resources and Gardening Application of Wild Begonia in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(1): 104-114. |
[3] | HUANG Xiaofa, ZHANG Wei, CEN Juyan, WU Guoxin, HUANG Shuying. Study on the Optimization and Selection of Cunninghamia lanceolata Standing Volume Model in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 61-67. |
[4] | LU Guangrong, CHEN Fangqing, LÜ Kun, WU Yu, HUANG Xiangfeng, WEN Ruge. Shrub Communities and Species Diversity Characteristics in the Southern Subtropical Zone in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(3): 89-95. |
[5] | WEI Jianheng, ZHAO Heng, GAO Zhongliang, WANG Hechenyang, MA Zenan, WANG Qiuhua, SHU lifu, YANG Hongmei. Prediction of Shrubbery Fire in Central Yunnan Province Based on the Adaptive NeuroFuzzy Inference System [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(2): 109-116. |
[6] | DAI Fenglin, CHEN Fangqing, LV Kun, LIU Yangyun. Hydrological Effects of Litter Layer in Four Typical Shrubs in Guangxi Zhuang Autonomous Region [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(1): 166-173. |
[7] | LU Xianjian, HUANG Yuhui, YAN Hongbo, ZHOU Lv, WU Chenlong, ZHOU Bin, LUO Le. Study on Rapid Extraction of Eucalyptus Vegetation Information in Guangxi Based on GEE [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(5): 52-60. |
[8] | CHEN Dai. Prediction of Forest Fire Occurrence in Daxing’an Mountains Based on Logistic Regression Model [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(1): 116-122. |
[9] | DUAN Chunyan, XU Guangping, SHEN Yuyi, LUO Yajin, LI Yanqiong, ZHANG Denan, SUN Yingjie, HE Chengxin. Ecological Stoichiometry Characteristics of Soils in Eucalyptus Plantations with Different Ages in North Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(6): 117-124. |
[10] | YAN Ping, ZOU Quancheng. Monitoring Efficiency and Suppression Accessibility of Forest Fire in Daxing'an Mountains Based on Fire Risk Division [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(5): 90-98. |
[11] | ZHOU Mei, LI Chungan, DAI Huabing. Mapping of Young Mangrove Forest by Using Remote Sensing—A Case Study in the Maoweihai Bay in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2016, 0(6): 26-30. |
[12] | HAN Mingchen,LIANG Yulian. Study on Changes in Forest Biomass Carbon Storage Based on Forest Inventory Data in Guangxi [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(6): 111-116. |
[13] | QIN Zuoyu,TANG Jian,CAO Jizhao,WANG Huili,DENG Xiaojun,PAN Bo. Assessment of Soil Fertility of Continuous Plantation of Chinese Fir Based on Principal Component and Cluster Analysis [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(5): 81-87. |
[14] | LIU Feng, XU Zhongwen, ZHENG Haifu. Problems and Countermeasures of Forest Dispute Mediation in Guangxi —A Case Study in Luzhai County,Guangxi Province [J]. FOREST RESOURCES WANAGEMENT, 2015, 0(3): 11-14. |
[15] | CAI Huide, NONG Shengqi, ZHANG Wei, JIANG Jinfeng, XIONG Xiaofei, LIU Feng. Modeling of Standing Tree Biomass for Main Species of Trees in Guangxi Province [J]. FOREST RESOURCES WANAGEMENT, 2014, 0(4): 58-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||