Forest and Grassland Resources Research ›› 2023›› Issue (6): 137-145.doi: 10.13466/j.cnki.lczyyj.2023.06.017
• Technical Application • Previous Articles Next Articles
Received:
2023-09-14
Revised:
2023-11-15
Online:
2023-12-28
Published:
2024-02-21
CLC Number:
SHI Zheyu, LI Zihao. Effect of Throughfall Reduction on Sap Flow of Pinus sylvestris var.mongolica in Sandy Land of Northwest Liaoning[J]. Forest and Grassland Resources Research, 2023, (6): 137-145.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2023.06.017
Tab.3
Correlationbetween the rate of sap flow and environmental factors under typical weather conditions
环境因子 | 晴天 | 阴天 | 雨天 | |||||
---|---|---|---|---|---|---|---|---|
对照 | 减雨 | 对照 | 减雨 | 对照 | 减雨 | |||
空气温度 | 0.919** | 0.913** | 0.766** | 0.844** | 0.877** | 0.857** | ||
空气湿度 | -0.812** | -0.821** | -0.727** | -0.778** | -0.499** | -0.592** | ||
饱和水汽压差 | 0.855** | 0.858** | 0.779** | 0.830** | 0.681** | 0.752** | ||
光和有效辐射值 | 0.773** | 0.812** | 0.638** | 0.740** | 0.695** | 0.769** | ||
5 cm土壤温度 | 0.435** | 0.393** | 0.672** | 0.606** | 0.416** | 0.309* | ||
10 cm土壤温度 | 0.179 | 0.136 | 0.380** | 0.28 | 0.248 | 0.136 | ||
20 cm土壤温度 | -0.421** | -0.458** | -0.431** | -0.547** | 0.340* | -0.44** | ||
5 cm土壤含水量 | -0.495** | -0.495** | 0.061 | 0.073 | -0.134 | -0.027 | ||
10 cm土壤含水量 | -0.261 | -0.246 | 0.171 | 0.161 | 0.352* | 0.268 | ||
20 cm土壤含水量 | — | — | -0.029 | -0.014 | — | — |
Tab.4
Correlation between the rate of sap flow at night and environmental factors
环境因子 | 晴天 | 阴天 | 雨天 | |||||
---|---|---|---|---|---|---|---|---|
对照 | 减雨 | 对照 | 减雨 | 对照 | 减雨 | |||
空气温度 | 0.926** | 0.945** | 0.628** | 0.614** | 0.372 | 0.253 | ||
空气湿度 | -0.624** | -0.617** | -0.510* | -0.490* | -0.526* | -0.485* | ||
饱和水汽压差 | 0.821** | 0.818** | 0.546* | 0.528* | 0.567* | 0.529* | ||
5 cm土壤温度 | 0.789** | 0.855** | 0.730** | 0.714** | 0.278 | 0.082 | ||
10 cm土壤温度 | 0.739** | 0.814** | 0.711** | 0.696** | 0.187 | -0.013 | ||
20 cm土壤温度 | -0.348 | -0.460 | -0.585** | -0.568** | -0.716** | -0.831** | ||
5 cm土壤含水量 | -0.854** | -0.797** | — | — | 0.475* | 0.421 | ||
10 cm土壤含水量 | — | — | -0.523** | -0.493* | — | — | ||
20cm土壤含水量 | — | — | 0.243 | 0.233 | — | — |
Tab.5
Correlation between the rate of sap flow and environmental variables before and after rains
环境因子 | 对照 | 减雨 |
---|---|---|
空气温度 | 0.699** | 0.757** |
空气湿度 | -0.831** | -0.900** |
饱和水汽压差 | 0.835** | 0.901** |
光合有效辐射值 | 0.656** | 0.806** |
5cm土壤温度 | 0.223** | 0.191** |
10cm土壤温度 | 0.097* | 0.057 |
20cm土壤温度 | -0.154** | -0.183** |
5cm土壤含水量 | -0.268** | -0.245** |
10cm土壤含水量 | -0.109** | -0.117** |
20cm土壤含水量 | -0.049 | -0.068 |
Tab.6
Correlation in the rate of sap flow from month to month and environmental factors during the growing season
环境因子 | 对照 | 减雨 |
---|---|---|
空气温度 | 0.380** | 0.542** |
空气湿度 | -0.356** | -0.488** |
饱和水汽压差 | 0.507** | 0.67** |
光和有效辐射值 | 0.608** | 0.78** |
5 cm土壤温度 | 0.119** | 0.136** |
10 cm土壤温度 | 0.096** | 0.103** |
20 cm土壤温度 | 0.073** | 0.066** |
5 cm土壤含水量 | -0.063** | -0.091** |
10 cm土壤含水量 | -0.075** | -0.112** |
20 cm土壤含水量 | -0.063* | -0.108** |
[1] |
Wullschleger S D, Hanson P J. Sensitivity of canopy transpiration to altered precipitation in an upland oak forest:Evidence from a long-term field manipulation study[J]. Global Change Biology, 2006, 12:97-109.
doi: 10.1111/gcb.2006.12.issue-1 |
[2] |
Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands:Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs[J]. Global Change Biology, 2008, 14:615-623.
doi: 10.1111/gcb.2008.14.issue-3 |
[3] |
Gang Huang, Li Yan, Su Yangui. Effects of increasing precipitation on soil microbial composition and soil respiration in a temperate desert,northwestern China[J]. Soil Biology and Biochemistry, 2015, 83:52-56.
doi: 10.1016/j.soilbio.2015.01.007 |
[4] | 赵平, 饶兴权, 马玲, 等. 马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J]. 生态学报, 2006, 12:4050-4058. |
[5] | 温淑红, 韩新生, 蔡进军, 等. 宁南黄土丘陵区山桃树干液流速率及其与气象因子的关系[J]. 西南农业学报, 2020, 33(6):1301-1308. |
[6] | 吴茜, 丁佳, 闫慧, 等. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35(3):256-267. |
[7] | 孙谷畴, 赵平, 曾小平, 等. 亚热带森林演替树种叶片气孔导度对环境水分的水力响应[J]. 生态学报, 2009, 29(2):698-705. |
[8] |
Ziv A, Domec J C, Oren R, et al. Growth and physiological responses of isohydric and anisohydric poplars to drought[J]. Journal of Experimental Botany, 2015, 66(14):4373-4381.
doi: 10.1093/jxb/erv195 pmid: 25954045 |
[9] |
吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12):1176-1187.
doi: 10.17521/cjpe.2015.0114 |
[10] |
Jian Shengqi, Wu Zening, Hu Caihong, et al. Sap flow in response to rainfall pulses for two shrub species in the semiarid Chinese Loess Plateau[J]. Journal of Hydrology and Hydromechanics, 2016, 64(2):121-132.
doi: 10.1515/johh-2016-0023 |
[11] |
Yan Chunhua, Wang Bei, Zhang Yang, et al. Responses of sap flow of deciduous and conifer trees to soil drying in a subalpine forest[J]. Forests, 2018, 9(1):32.
doi: 10.3390/f9010032 |
[12] | 张慧玲, 丁亚丽, 陈洪松, 等. 出露基岩生境典型植物树干液流对自然降水和连续干旱的响应特征[J]. 应用生态学报, 2018, 29(4):1117-1124. |
[13] |
Fisher R A, Williams M., Costa A L, et al. The response of an Eastern Amazonian rain forest to drought stress:results and modelling analyses from a throughfall exclusion experiment[J]. Global Change Biology, 2007, 13(11):2361-2378.
doi: 10.1111/gcb.2007.13.issue-11 |
[14] |
Besson C K L, Raquel L R, Maria A, et al. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland[J]. Agricultural and Forest Meteorology, 2014, 184:230-242.
doi: 10.1016/j.agrformet.2013.10.004 |
[15] |
Worrall J J, Egeland L, Eager T, et al. Rapid mortality of Populustremuloides in southwestern Colorado,USA[J]. Forest Ecology and Management, 2007, 255(3-4):686-696.
doi: 10.1016/j.foreco.2007.09.071 |
[16] |
Fensham R J, Fairfax R J. Drought-related tree death of savanna eucalypts:Species susceptibility,soil conditions and root architecture[J]. Journal of Vegetation Science, 2007, 18(1):71-80.
doi: 10.1111/jvs.2007.18.issue-1 |
[17] | 程徐冰, 吴军, 韩士杰, 等. 减少降水对长白山蒙古栎叶片生理生态特性的影响[J]. 生态学杂志, 2011, 30(9):1908-1914. |
[18] | 李自豪, 卢志朋, 马澜桐, 等. 辽西北半干旱区沙地樟子松树干液流变化特征及影响因素[J]. 沈阳农业大学学报, 2020, 51(3):271-278. |
[19] | 凌海燕, 刘世荣, 栾军伟, 等. 模拟穿透雨减少对锐齿栎(Quercusaliena var. acuteserrata)树干液流密度的影响[J]. 生态学报, 2020, 40(8):2726-2734. |
[20] |
Gao Jianguo, Zhao Ping, Shen Weijun, et al. Physiological homeostasis and morphological plasticity of two tree species subjected to precipitation seasonal distribution changes[J]. Perspectives in Plant Ecology,Evolution and Systematics, 2017, 25:1-19.
doi: 10.1016/j.ppees.2017.01.002 |
[21] |
Hertel D, Strecker T, Müller-Haubold H, et al. Fine root biomass and dynamics in beech forests across a precipitation gradient-is optimal resource partitioning theory applicable to water-limited mature trees?[J]. Journal of Ecology, 2013, 101:1183-1200.
doi: 10.1111/jec.2013.101.issue-5 |
[22] |
Zang U, Goisser M, Häberle K H, et al. Effects of drought stress on photosynthesis,rhizosphere respiration,and fine-root characteristics of beech saplings:A rhizotron field study[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(2):168-177.
doi: 10.1002/jpln.v177.2 |
[23] |
Brunner I, Herzog C, Dawes M A, et al. How tree roots respond to drought[J]. Frontiers in Plant Science, 2015, 6:547.
doi: 10.3389/fpls.2015.00547 pmid: 26284083 |
[24] | 王晓钰, 陈丹萍, 徐光照, 等. 不同生态环境下水曲柳的解剖结构差异分析[J]. 安徽农业科学, 2017, 45(21):1-3. |
[25] | 徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1):24-30. |
[26] |
Pataki D E, Oren R. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest[J]. Advances in Water Resources, 2003, 26(12):1267-1278.
doi: 10.1016/j.advwatres.2003.08.001 |
[27] |
Otieno D O, Schmidt M W T, Kinyamario J I, et al. Responses of Acacia tortilis and acacia xanthophloea to seasonal changes in soil water availability in the savanna region of Kenya[J]. Journal of Arid Environments, 2005, 62(3):377-400.
doi: 10.1016/j.jaridenv.2005.01.001 |
[28] | 夏江宝, 张淑勇, 朱丽平, 等. 贝壳堤岛酸枣树干液流及光合参数对土壤水分的响应特征[J]. 林业科学, 2014, 50(10):24-32. |
[29] | 徐先英, 孙保平, 丁国栋, 等. 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应[J]. 生态学报, 2008, 28(3):895-905. |
[30] | 王文栋, 张毓涛, 芦建江, 等. 新疆乌拉泊库区3种灌木树干液流对比研究[J]. 新疆农业科学, 2012, 49(11):2035-2041. |
[31] |
Zeppel M, Tissue D, Taylor D, et al. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies[J]. Tree Physiology, 2010, 30(8):988-1000.
doi: 10.1093/treephys/tpq053 pmid: 20566582 |
[32] |
Dawson T E, Burgess S S O, Tu K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology, 2007, 27(4):561-575.
pmid: 17241998 |
[33] | 卢森堡. 黄土丘陵区油松和沙棘水分来源及其对降水的响应[D]. 西安: 西北农林科技大学, 2018. |
[34] | 王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局[J]. 生态学报, 2013, 33(5):1375-1385. |
[35] | 卢志朋, 魏亚伟, 李志远, 等. 辽西北沙地樟子松树干液流的变化特征及其影响因素[J]. 生态学杂志, 2017, 36(11):3182-3189. |
[36] | 黄雅茹, 辛智鸣, 李永华, 等. 乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(6):131-139. |
[1] | YAN Keyu, CHEN Pingping, LI Jianxing, ZHANG Limei, LIU Hui, CHEN Zhengfa. Habitat Characteristics and Effects on Growth of Arundinaria faberi in Different Slope Positions of Subalpine Meadow [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 70-78. |
[2] | XIAO Yifa, WANG Mengjun, LI Xinyu, CHEN fei, WANG Jishan, ZHANG Haiwu, CIDAN Puchi. Analysis on the Potential Distribution Area of Dendroctonus micans in Tibet [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(2): 141-145. |
[3] | GONG Yinting, ZHENG Guilian, REN Zhengxing. The Theory and Simulation Studies of Stomatal Conductance at Night [J]. FOREST RESOURCES WANAGEMENT, 2019, 0(2): 137-141. |
[4] | LI Yongxia, QIU Banggui, YANG Xiaolin. Soil Moisture Affecting Factors in Semi-arid Valley Forestland of Lhasa [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(5): 61-65. |
[5] | CHENG Lifen. Biomass and Carbon Density of Forest Communities in Shanxi Huoshan Mountains [J]. FOREST RESOURCES WANAGEMENT, 2017, 0(1): 70-74. |
[6] | FAN Wenbin, ZHAO Congju, LIN Zhi, CHEN Hao. Growth Characteristics of Eucalyptus Plantation and Their Responses to Climate Environment in Western Hainan Island [J]. FOREST RESOURCES WANAGEMENT, 2013, 0(2): 77-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||