Forest and Grassland Resources Research ›› 2024›› Issue (1): 102-110.doi: 10.13466/j.cnki.lczyyj.2024.01.014
• Technical Application • Previous Articles Next Articles
LI Zhongmu1,2(), CHE Fengxian3, GAO Chengjie2, LI Jin2, WANG Lu2, CUI Kai2()
Received:
2023-11-07
Revised:
2024-01-08
Online:
2024-02-28
Published:
2024-03-22
CLC Number:
LI Zhongmu, CHE Fengxian, GAO Chengjie, LI Jin, WANG Lu, CUI Kai. Phenotypic Variation and Early Selection of Half-sib Families of Pinus yunnanensis[J]. Forest and Grassland Resources Research, 2024, (1): 102-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.lyzygl.com.cn/EN/10.13466/j.cnki.lczyyj.2024.01.014
Tab.1
The formula of data processing
公式名称 | 公式 | 参数说明 | 参考文献 |
---|---|---|---|
混合线性模型 | Yijk=μ+Bi+Fj+BFij+eijk | Yijk为第i区组第j家系第k单株的观测值;μ为群体平均值;Bi为第i区组效应;Fj为第j家系的效应;BFij为第i家系和第j区组的互作效应;eijk为随机误差。此外,μ和Bi为固定效应,其余为随机效应。 | [ |
遗传力 | n为小区单株数的调和值;b为区组数; | [ | |
表型变异系数 | VCVP= | [ | |
表型相关性 | rp=Covp12/ | Covp12为表型性状的协方差; | [ |
隶属函数 | μA=(Xi-Xmin)/(Xmax-Xmin) | Xi为表型性状的测量值;Xmin为表型性状的最小值;Xmax为表型性状的最大值。 | |
遗传增益 | G=(Xi- | [ | |
实际增益 | ΔG=(Xi- | [ |
Tab.2
Variance analysis of phenotypic traits of P.yunnanensis
性状 | F | 方差分量百分比% | |||||
---|---|---|---|---|---|---|---|
家系 | 区组 | 家系×区组 | 家系 | 区组 | 家系×区组 | ||
树高 | 3.784** | 28.536** | 3.393** | 10.60 | 79.90 | 9.50 | |
地径 | 3.896** | 45.086** | 3.455** | 7.43 | 85.98 | 6.59 | |
长冠径 | 3.819** | 28.295** | 3.299** | 10.79 | 79.90 | 9.32 | |
短冠径 | 3.807** | 52.492** | 3.209** | 6.40 | 88.21 | 5.39 | |
枝下高 | 2.310** | 7.490** | 1.888** | 19.76 | 64.08 | 16.16 | |
当年生侧枝数 | 2.999** | 5.932** | 2.771** | 25.63 | 50.69 | 23.68 | |
当年生主枝长 | 3.897** | 26.112** | 3.657** | 11.58 | 77.56 | 10.86 | |
球果数量 | 1.129 | 0.235 | 0.520 | 59.91 | 12.50 | 27.60 |
Tab.3
Descriptive statistics of phenotypic traits of P.yunnanensis
性状 | 变化范围 | 均值 | 标准差 | 表型变异系数/% | 遗传力 |
---|---|---|---|---|---|
树高/cm | 106.55~203.13 | 164.43 | 45.98 | 27.96 | 0.78 |
地径/mm | 41.90~ 67.17 | 58.34 | 12.60 | 21.60 | 0.78 |
长冠径/cm | 76.58~159.53 | 128.07 | 36.90 | 28.81 | 0.78 |
短冠径/cm | 66.18~148.60 | 111.51 | 35.30 | 31.66 | 0.78 |
枝下高/cm | 23.47~ 48.90 | 36.13 | 13.37 | 37.01 | 0.76 |
当年生侧枝数 | 2.82~ 7.39 | 3.60 | 1.38 | 38.33 | 0.76 |
当年生主枝长/cm | 37.17~ 83.00 | 58.59 | 20.48 | 34.95 | 0.77 |
球果数量 | 0~ 28.00 | 6.10 | 5.25 | 86.07 | 0.75 |
Tab.4
The actual gain of phenotypic traits of superior families of P.yunnanensis %
家系 | 树高 | 地径 | 长冠径 | 短冠径 | 枝下高 | 当年生侧枝数 | 当年生主枝长 | 球果数量 |
---|---|---|---|---|---|---|---|---|
11 | 25.17 | 10.87 | 19.61 | 27.62 | -34.93 | 3.66 | 38.88 | -37.26 |
18 | 23.56 | 15.89 | 20.37 | 22.68 | -13.12 | 16.21 | 32.55 | -10.37 |
25 | 9.77 | 14.61 | 10.97 | 14.76 | -14.04 | -1.43 | 19.12 | -100.00 |
27 | 22.27 | 15.15 | 26.09 | 35.08 | -6.04 | 16.29 | 20.99 | 34.44 |
44 | 18.49 | 12.34 | 15.33 | 14.84 | 7.94 | -0.51 | 22.54 | 79.26 |
50 | 13.91 | 2.48 | 15.31 | 16.32 | 16.40 | 3.57 | 16.19 | -19.34 |
56 | 15.65 | 12.71 | 19.01 | 21.40 | 14.36 | 6.43 | 19.91 | 7.55 |
68 | 15.33 | 14.15 | 17.48 | 21.98 | 6.38 | 3.66 | 21.84 | -37.26 |
83 | 10.94 | 13.64 | 14.44 | 17.84 | 21.22 | 0.05 | 2.65 | -10.37 |
96 | 12.08 | 5.89 | 19.74 | 19.39 | 7.32 | 9.01 | 12.68 | 85.98 |
Tab.5
The genetic gain of phenotypic traits of superior families of P.yunnanensis %
家系 | 树高 | 地径 | 长冠径 | 短冠径 | 枝下高 | 当年生侧枝数 | 当年生主枝长 | 球果数量 |
---|---|---|---|---|---|---|---|---|
11 | 19.63 | 8.48 | 15.30 | 21.55 | -26.55 | 2.78 | 29.94 | -27.95 |
18 | 18.37 | 12.39 | 15.89 | 17.69 | -9.97 | 12.32 | 25.06 | -7.78 |
25 | 7.62 | 11.39 | 8.56 | 11.51 | -10.67 | -1.08 | 14.72 | -75.00 |
27 | 17.37 | 11.82 | 20.35 | 27.36 | -4.59 | 12.38 | 16.16 | 25.83 |
44 | 14.43 | 9.62 | 11.96 | 11.57 | 6.03 | -0.39 | 17.36 | 59.44 |
50 | 10.85 | 1.93 | 11.94 | 12.73 | 12.46 | 2.71 | 12.47 | -14.50 |
56 | 12.20 | 9.91 | 14.83 | 16.70 | 10.91 | 4.89 | 15.33 | 5.66 |
68 | 11.96 | 11.04 | 13.63 | 17.14 | 4.85 | 2.78 | 16.82 | -27.95 |
83 | 8.53 | 10.64 | 11.27 | 13.92 | 16.13 | 0.03 | 2.04 | -7.78 |
96 | 9.42 | 4.60 | 15.39 | 15.13 | 5.56 | 6.85 | 9.76 | 64.48 |
[1] | 李鑫, 李昆, 段安安, 等. 不同地理种源云南松幼苗生物量分配及其异速生长[J]. 北京林业大学学报, 2019, 41(4):41-50. |
[2] |
Liu Zirui, Gao Chengjie, Li Jin, et al. Phenotypic diversity analysis and superior family selection of industrial raw material forest species-Pinus yunnanensis Franch[J]. Forests, 2022, 13(4):618.
doi: 10.3390/f13040618 |
[3] | 金振洲, 彭鉴. 云南松[M]. 昆明: 云南科技出版社, 2004. |
[4] | Gao Chengjie, Liu Fangyan, Zhang Chunhua, et al. Germination responses to water potential and temperature variation among provenances of Pinus yunnanensis[J]. Flora, 2021,276-277. |
[5] |
Cai Nianhui, Xu Yulan, Cheng Shi, et al. Variation in seed and seedling traits and their relations to geo-climatic factors among populations in Yunnan Pine(Pinus yunnanensis)[J]. Journal of Forestry Research, 2016, 27(5):1009-1017.
doi: 10.1007/s11676-016-0228-z |
[6] |
Xu Yulan, Woeste Keith, Cai Nianhui, et al. Variation in needle and cone traits in natural populations of Pinus yunnanensis[J]. Journal of Forestry Research, 2015, 27(1):41-49.
doi: 10.1007/s11676-015-0153-6 |
[7] | Liu Zirui, Li Jin, Gao Chengjie, et al. The cellulose-lignin balance mediated by auxin signal transduction affects the twisted growth of Yunnan pine trunk[J]. Scientia Horticulturae, 2023,317. |
[8] | 蔡年辉, 许玉兰, 李根前, 等. 云南松茎干弯曲、扭曲特性的研究现状及展望[J]. 林业调查规划, 2016, 41(6):19-23. |
[9] | 许玉兰. 云南松天然群体遗传变异研究[D]. 北京: 北京林业大学, 2015. |
[10] | 郑畹, 舒筱武, 冯弦. 云南松优良种源生长量早期选择的研究[J]. 云南林业科技, 1998(3):13-18. |
[11] | 谷丽萍, 郑畹, 李思广, 等. 云南松不同种源和家系苗期生长性状分析[J]. 西南林业大学学报, 2016, 36(02):84-88. |
[12] | 李品荣, 陈强, 常恩福, 等. 云南松母树林的营建技术[J]. 林业科技开发, 2005(4):40-42. |
[13] | 何富强. 云南松无性系种子园营建技术及其研究[J]. 云南林业科技, 1997(1):2-9. |
[14] | 陈强, 车凤仙, 刘永刚, 等. 弥渡云南松无性系种子园子代生长量遗传分析[J]. 西部林业科学, 2020, 49(4):8-15. |
[15] | Diao Shu, Hou Yimei, Xie Yunhui, et al. Age trends of genetic parameters,early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families[J]. BMC Gene-tics, 2016, 17(1):104. |
[16] | 季孔庶, 樊明亮, 徐立安. 马尾松无性系种子园半同胞子代变异分析和家系选择[J]. 林业科学, 2005, 41(6):43-49. |
[17] |
Dong Mingliang, Fan Yingming, Wu Zhihui, et al. Age-age correlations and early selection for growth traits in 40 half-sib families of Larix principis-rupprechtii[J]. Journal of Forestry Research, 2018, 30(6):2111-2117.
doi: 10.1007/s11676-018-0706-6 |
[18] | Kunmar D, Singh N. Age-age correlation for early selection of clones of Populus in India[J]. Silvae Genetica, 2001, 50(3-4):103-108. |
[19] | Lima J L, Souza J C D, Ramalho M A P, et al. Early selection of parents and trees in Eucalyptus full-sib progeny tests[J]. Crop Breeding and Applied Biotechnology, 2011,(11):10-16. |
[20] |
Pan Yanyan, Li Shuchun, Wang Chenglu, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. Journal of Forestry Research, 2017, 29(4):1031-1039.
doi: 10.1007/s11676-017-0492-6 |
[21] |
Gouv A L, Silva G A, Verardi C K, et al. Rubber tree early selection for yield stability in time and among locations[J]. Euphytica, 2013, 191(3):365-373.
doi: 10.1007/s10681-013-0874-6 |
[22] |
Lepoittevin C, Rousseau J P, Guillenmin A, et al. Genetic parameters of growth,straightness and wood chemistry traits in Pinus pinaster[J]. Annals of Forest Science, 2011, 68(4):873-884.
doi: 10.1007/s13595-011-0084-0 |
[23] | 李帅锋, 苏建荣, 朗学东, 等. 思茅松自由授粉家系遗传参数与早期选择分析[J]. 林业科学研究, 2017, 30(6):929-935. |
[24] | 白天道, 徐立安, 王章荣, 等. 马尾松实生种子园自由授粉子代测定及亲本家系选择增益估算[J]. 林业科学研究, 2012, 25(4):449-455. |
[25] | 金国庆, 秦国峰, 刘伟宏, 等. 不同林龄马尾松的种源选择效果[J]. 林业科学, 2011, 47(2):39-45. |
[26] |
王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92.
doi: 10.3969/j.issn.1000-2006.202003086 |
[27] | 王云鹏, 张蕊, 周志春, 等. 木荷优树自由授粉家系早期生长性状遗传变异动态规律[J]. 林业科学, 2020, 56(9):77-86. |
[28] | 魏嘉彤, 陈思琪, 芦贤博, 等. 基于生长与木材性状的红松优良种源评价选择[J]. 北京林业大学学报, 2022, 44(3):12-23. |
[29] | Palle S R, Seeve C M, Eckert A J, et al. Natural variation in expression of genes involved in xylem development in loblolly pine(Pinus taeda L.)[J]. Tree Genetics & Genomes, 2011, 7(1):193-206. |
[30] |
Zhang Zhen, Jin Guoqing, Feng Zhongping, et al. Joint influence of genetic origin and climate on the growth of Masson pine(Pinus massoniana Lamb.)in China[J]. Scientific Reports, 2020, 10(1):4653.
doi: 10.1038/s41598-020-61597-9 pmid: 32170277 |
[31] | Makouanzi Ekomono C G, Rambolarimanana T, Bouvet J M. Preponderance of additive and non-additive variances for growth,ecophysiological and wood traits in Eucalyptus hybrid genotype-by-spacing interaction[J]. Tree Genetics & Genomes, 2022, 18(4):32. |
[32] |
Maniee M, Kahrizi D, Mohammadi R. Genetic variability of some morpho-physiological traits in durum wheat(Triticum turgidum var.durum)[J]. Journal of Applied Sciences, 2009, 9(7):1383-1387.
doi: 10.3923/jas.2009.1383.1387 |
[33] |
Baltunis B S, Gapare W, Wu H. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia[J]. Silvae Genetica, 2010, 59(1-6):113-124.
doi: 10.1515/sg-2010-0014 |
[34] |
Li Yanjie, Ding Xianyin, Jiang Jingmin, et al. Inheritance and correlation analysis of pulpwood properties,wood density,and growth traits of Slash Pine[J]. Forests, 2020, 11(5):493.
doi: 10.3390/f11050493 |
[35] | Rweyongeza D, Yeh F, Dancik B, et al. Genetic variation in height,branch and needle lengths of Pinus sylvestris L.from Siberia tested in Alberta,Canada[J]. Silvae Genetica, 2003, 52(2):52-59. |
[36] |
Mckeand S E, Li B, Grissom J E, et al. Genetic parameter estimates for growth traits from Diallel tests of Loblolly Pine throughout the Southeastern United States[J]. Silvae Genetica, 2008, 57(1-6):101-110.
doi: 10.1515/sg-2008-0016 |
[37] | Salaya-Domnguez J M, LÓpez-uptin J, Vargas-Hernández J J. Genetic and environment variation in two progeny tests of Pinus patula[J]. Agrociencia, 2012, 46(5):519-534. |
[38] |
Liang Deyang, Ding Changjun, Zhao Guanghao, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. Journal of Forestry Research, 2017, 29(3):611-622.
doi: 10.1007/s11676-017-0471-y |
[39] | Spinelli V M, Dias L A S, Rocha R B, et al. Estimates of genetic parameters with selection within and between half-sib families of Jatropha curcas L[J]. Industrial Crops and Products, 2015(69):355-361. |
[40] | Kroon J, Ericsson T, Jansson G, et al. Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden[J]. Tree Genetics & Genomes, 2011, 7(6):1099-1111. |
[41] | Lambeth C C. Juvenile-mature correlations in Pinaceae and implications for early selection[J]. Forest Science, 1980, 26(4):571-580. |
[42] | Xiang B, Li Bailian, Isik F. Time trend of genetic parameters in growth traits of Pinus taeda L[J]. Silvae Genetica, 2003, 52(3):114-121. |
[43] |
Lai Meng, Sun Xiaomei, Chen Dongsheng, et al. Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection[J]. BMC Genetics, 2014, 15(1):1-8.
doi: 10.1186/1471-2156-15-1 |
[44] | Singh N B, Singh B, Kumar D. Genetic analysis of poplar(Populus deltoides Bartr.) clones for early generation selection[J]. Indian Journal of Genetics and Plant Breeding, 2014, 74(4):487-495. |
[45] | 苑海静, 成向荣, 虞木奎, 等. 麻栎优树自由授粉家系生长性状3地点间动态变异及优良家系选择[J]. 林业科学研究, 2022, 35(2):9-18. |
[46] | Raj A, Sehgal R, Sharma K, et al. Genetic variation in wood specific gravity among half-sib families of chir pine(Pinus roxburghii sargent)[J]. New Forests, 2010,(40):213-227. |
[47] |
Xiu Wangyan, Zhu Yanfang, Chen Baihong, et al. Effects of paclobutrazol on the physiological characteristics of Malus halliana Koehne Seedlings under drought stress via principal component analysis and membership function analysis[J]. Arid Land Research and Management, 2019, 33(1):97-113.
doi: 10.1080/15324982.2018.1488300 |
[48] | 孙明升, 冯源恒, 贾婕, 等. 不同松树种间杂交类型的可育性分析[J]. 广西植物, 2021, 41(8):1270-1279. |
[49] | 蒋开彬, 杜澄举, 李赛楠, 等. 4年生火炬松半同胞家系生长和分枝性状遗传评估[J]. 北京林业大学学报, 2020, 42(9):1-10. |
[50] |
Weng H Y, Tosh K, Adam G, et al. Realized genetic gains observed in a first generation seedling seed orchard for jack pine in New Brunswick,Canada[J]. New Forests, 2008, 36(3):285-298.
doi: 10.1007/s11056-008-9100-0 |
[1] | XIAN Mingrui, DANG Wei, DAI Bin, LIU Bo, LIN Guoliu. Study on Fuel Loads Models of Pinus yunnanensis in the Southwest of Sichuan and the Impact Factors [J]. FOREST RESOURCES WANAGEMENT, 2023, 0(2): 64-69. |
[2] | WANG Yu, CAI Nianhui, CHEN Lin, TANG Junrong, XU Yulan, CHEN Shi. Relationships Between Biomass Allocation Pattern and Plant Size of Pinus yunnanensis Seedling [J]. FOREST RESOURCES WANAGEMENT, 2022, 0(6): 101-108. |
[3] | HE Bin, LI Qing, LI Yangzheng, LI Wangjun. Quantitative Dynamics and Spatial Distribution Pattern of Pinus yunnanensis Population in Northwest of Guizhou Province [J]. FOREST RESOURCES WANAGEMENT, 2021, 0(2): 149-157. |
[4] | WEI Anchao, ZHANG Dawei. Study on the Volume Growth Rate Model of Pinus yunnanensis of Individual Tree [J]. FOREST RESOURCES WANAGEMENT, 2020, 0(6): 40-46. |
[5] | LI Xiaoyao, RUAN Fangfang, LIU Xusheng, YU Linfeng, LIN Qinan, HUANG Huaguo. Study on 3D Visual Simulation Methods for Pinus yunnanensis under Different Degrees of Insect Pest [J]. FOREST RESOURCES WANAGEMENT, 2018, 0(3): 65-70. |
[6] | LUO Hengchun, WEI Anchao, HUANG Tian, YU Zhexiu, ZHANG Chao. Analysis on Dynamic Change of Biomass and Carbon Stock of Pinus yunnanensis in Yunnan,China [J]. FOREST RESOURCES WANAGEMENT, 2016, 0(6): 37-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||