Forest and Grassland Resources Research ›› 2024›› Issue (1): 82-87.doi: 10.13466/j.cnki.lczyyj.2024.01.011
• Scientific Research • Previous Articles Next Articles
WANG Guilin1,2(), TAN Wei1,2(
), CHEN Botao3
Received:
2023-12-26
Revised:
2024-02-02
Online:
2024-02-28
Published:
2024-03-22
CLC Number:
WANG Guilin, TAN Wei, CHEN Botao. Height-diameter Model of Cunninghamia lanceolata Based on Deep Neural Network[J]. Forest and Grassland Resources Research, 2024, (1): 82-87.
Tab.2
Traditional model and machine learning fitting results
二八比例(训练集占比为20%、测试集占比80%) | |||||||
---|---|---|---|---|---|---|---|
方法 | Power模型 (M1) | Michaelis-Menten 模型(M2) | Curtis模型 (M3) | 深度神经网络模型(DNN) | |||
Relu | Adam | L2 | Dropout | ||||
决定系数R2 | 0.634 | 0.661 | 0.63 | 0.661 | 0.669 | 0.671* | 0.661 |
平均绝对误差MAE | 1.716 | 1.634 | 1.726 | 1.622 | 1.606 | 1.599* | 1.63 |
均方根误差RMSE | 2.137 | 2.053 | 2.149 | 2.053 | 2.029 | 2.024* | 2.052 |
三七比例(训练集占比为30%、测试集占比70%) | |||||||
方法 | Power模型 (M1) | Michaelis-Menten 模型(M2) | Curtis模型 (M3) | 深度神经网络模型(DNN) | |||
Relu | Adam | L2 | Dropout | ||||
决定系数R2 | 0.638 | 0.659 | 0.634 | 0.584 | 0.584 | 0.583 | 0.587 |
平均绝对误差MAE | 1.766 | 1.688 | 1.774 | 1.716 | 1.715 | 1.716 | 1.711 |
均方根误差RMSE | 2.191 | 2.107 | 2.201 | 2.116 | 2.117 | 2.120 | 2.110 |
四六比例(训练集占比为40%、测试集占比60%) | |||||||
方法 | Power模型 (M1) | Michaelis-Menten 模型(M2) | Curtis模型 (M3) | 深度神经网络模型(DNN) | |||
Relu | Adam | L2 | Dropout | ||||
决定系数R2 | 0.634 | 0.662* | 0.631 | 0.654 | 0.656 | 0.657 | 0.654 |
平均绝对误差MAE | 1.646 | 1.571* | 1.654 | 1.568 | 1.563 | 1.562 | 1.573 |
均方根误差RMSE | 2.055 | 1.971* | 2.065 | 1.976 | 1.971 | 1.968 | 1.976 |
[1] | 郭卫红, 郑庆荣, 胡砚秋, 等. 山西五台山主要针叶树种树高-胸径曲线模型研究[J]. 湖南林业科技, 2022, 49(6):72-77. |
[2] | 王景弟, 杨蕊, 田育新. 枫香和杉木树高-胸径模型的拟合与评价[J]. 湖南林业科技, 2021, 48(4):64-67. |
[3] | 刘金义. 辽东山区人工红松枝下高模型的研建[J]. 林业科技通讯, 2022(8):95-98. |
[4] | 李晓晶. 杂种落叶松树高-胸径模型的研究[J]. 林业科技情报, 2020, 52(4):28-30. |
[5] | 郭嘉, 孙帅超, 田相林, 等. 引入优势木树高建立的秦岭林区松栎林树高-胸径模型[J]. 东北林业大学学报, 2019, 47(11):66-72. |
[6] | Cheng Deng, Zhang Yiyi, Lu Jiangyan, et al. Thinning effects on the tree height-diameter allometry of Masson Pine(Pinus massoniana Lamb.)[J]. Multidisciplinary Digital Publishing Institute, 2019, 10(12):1129. |
[7] | Mensah S, Pienaar O L, Kunneke A. Height-Diameter allometry in South Africa's indigenous high forests:Assessing generic models performance and function forms[J]. For.Ecol.Manag. 2018, 410:1-11. |
[8] | Khamyong N, Wangpakapattanawong P, Chairuangsri S, et al. Tree species composition and height-diameter allometry of three forest types in Northern Thailand[J]. CMU J.Nat. Sci.2018, 17(4):289-306. |
[9] | 董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(7):154-156. |
[10] | 卯光宪, 谭伟, 柴宗政, 等. 基于BP神经网络的马尾松人工林胸径-树高模型预测[J]. 浙江农林大学学报, 2020, 37(4):752-760. |
[11] |
Chen Xinxin, Jiang Kang, Zhu Yunshi, et al. Individual tree crown segmentation directly from UAV-Borne LiDAR data using the point net of deep learning[J]. Forests 2021, 12(2):131.
doi: 10.3390/f12020131 |
[12] |
Ercanli I. Innovative DNN artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height[J]. Forest Ecosystems, 2020, 7(1):7-12.
doi: 10.1186/s40663-020-0216-9 |
[13] | Maler S, Miglietta F, Gobakken T, et al. Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques[J]. iForest-Biogeosciences and Forestry, 2019(3). |
[14] | Loubota P G J, Bocko Y E, Mavoungou A Y, et al. Height-diameter allometry in African monodominant forest close to mixed forest[J]. Journal of Tropical Ecology, 2021(2):37. |
[15] | 梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高-胸径模型比较[J]. 林业科学研究, 2021, 34(6):65-72. |
[16] |
Dantas D, Calegario N, Fausto W A J, et al. Multilevel nonlinear mixed-effects model and machine learning for predicting the volume of eucalyptus spp.trees[J]. Cerne, 2020, 26(1),48-57.
doi: 10.1590/01047760202026012668 |
[17] |
Aguilar F J, Nemmaoui A, Aguilar M A, et al. Building tree allometry relationships based on TLS point clouds and machine learning regression[J]. Applied Sciences, 2021, 11(21):10139.
doi: 10.3390/app112110139 |
[18] |
Casas G G, Gonzales D G E, Villanueva J R B, et al. Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart in the Peruvian Amazon[J]. Forests 2022, 13(5):697.
doi: 10.3390/f13050697 |
[19] |
Wang Jiamin, Chen Xinxin, Cao Lin, et al. Individual rubber tree segmentation based on ground-based LiDAR data and faster R-CNN of deep learning[J]. Forests, 2019, 10(9):793.
doi: 10.3390/f10090793 |
[20] | 贺梦莹. 长白落叶松-水曲柳混交林冠幅与冠长预测模型的研究[D]. 哈尔滨: 东北林业大学, 2020. |
[21] | 曹晓梅, 苗铮, 郝元朔, 等. 基于树种分类的帽儿山阔叶混交林树高-胸径模型[J/OL]. 应用生态学报:1-17(2024-01-12)[2024-02-02].http://doi.org/10.13287/j.1001-9332.202402.016. |
[22] | Ercanli I. Artificial intelligence with DNN algorithms to model relationships between total tree height and diameter at breast height[J]. Forest Systems, 2020, 29(2):103. |
[23] |
Corte A, Souza D V, Rex F E, et al. Forest inventory with high-density UAV-Lidar:Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179:105815.
doi: 10.1016/j.compag.2020.105815 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 130
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||