[1] |
郭卫红, 郑庆荣, 胡砚秋, 等. 山西五台山主要针叶树种树高-胸径曲线模型研究[J]. 湖南林业科技, 2022, 49(6):72-77.
|
[2] |
王景弟, 杨蕊, 田育新. 枫香和杉木树高-胸径模型的拟合与评价[J]. 湖南林业科技, 2021, 48(4):64-67.
|
[3] |
刘金义. 辽东山区人工红松枝下高模型的研建[J]. 林业科技通讯, 2022(8):95-98.
|
[4] |
李晓晶. 杂种落叶松树高-胸径模型的研究[J]. 林业科技情报, 2020, 52(4):28-30.
|
[5] |
郭嘉, 孙帅超, 田相林, 等. 引入优势木树高建立的秦岭林区松栎林树高-胸径模型[J]. 东北林业大学学报, 2019, 47(11):66-72.
|
[6] |
Cheng Deng, Zhang Yiyi, Lu Jiangyan, et al. Thinning effects on the tree height-diameter allometry of Masson Pine(Pinus massoniana Lamb.)[J]. Multidisciplinary Digital Publishing Institute, 2019, 10(12):1129.
|
[7] |
Mensah S, Pienaar O L, Kunneke A. Height-Diameter allometry in South Africa's indigenous high forests:Assessing generic models performance and function forms[J]. For.Ecol.Manag. 2018, 410:1-11.
|
[8] |
Khamyong N, Wangpakapattanawong P, Chairuangsri S, et al. Tree species composition and height-diameter allometry of three forest types in Northern Thailand[J]. CMU J.Nat. Sci.2018, 17(4):289-306.
|
[9] |
董云飞, 孙玉军, 王轶夫, 等. 基于BP神经网络的杉木标准树高曲线[J]. 东北林业大学学报, 2014, 42(7):154-156.
|
[10] |
卯光宪, 谭伟, 柴宗政, 等. 基于BP神经网络的马尾松人工林胸径-树高模型预测[J]. 浙江农林大学学报, 2020, 37(4):752-760.
|
[11] |
Chen Xinxin, Jiang Kang, Zhu Yunshi, et al. Individual tree crown segmentation directly from UAV-Borne LiDAR data using the point net of deep learning[J]. Forests 2021, 12(2):131.
doi: 10.3390/f12020131
|
[12] |
Ercanli I. Innovative DNN artificial intelligence applications for predicting relationships between individual tree height and diameter at breast height[J]. Forest Ecosystems, 2020, 7(1):7-12.
doi: 10.1186/s40663-020-0216-9
|
[13] |
Maler S, Miglietta F, Gobakken T, et al. Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques[J]. iForest-Biogeosciences and Forestry, 2019(3).
|
[14] |
Loubota P G J, Bocko Y E, Mavoungou A Y, et al. Height-diameter allometry in African monodominant forest close to mixed forest[J]. Journal of Tropical Ecology, 2021(2):37.
|
[15] |
梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高-胸径模型比较[J]. 林业科学研究, 2021, 34(6):65-72.
|
[16] |
Dantas D, Calegario N, Fausto W A J, et al. Multilevel nonlinear mixed-effects model and machine learning for predicting the volume of eucalyptus spp.trees[J]. Cerne, 2020, 26(1),48-57.
doi: 10.1590/01047760202026012668
|
[17] |
Aguilar F J, Nemmaoui A, Aguilar M A, et al. Building tree allometry relationships based on TLS point clouds and machine learning regression[J]. Applied Sciences, 2021, 11(21):10139.
doi: 10.3390/app112110139
|
[18] |
Casas G G, Gonzales D G E, Villanueva J R B, et al. Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart in the Peruvian Amazon[J]. Forests 2022, 13(5):697.
doi: 10.3390/f13050697
|
[19] |
Wang Jiamin, Chen Xinxin, Cao Lin, et al. Individual rubber tree segmentation based on ground-based LiDAR data and faster R-CNN of deep learning[J]. Forests, 2019, 10(9):793.
doi: 10.3390/f10090793
|
[20] |
贺梦莹. 长白落叶松-水曲柳混交林冠幅与冠长预测模型的研究[D]. 哈尔滨: 东北林业大学, 2020.
|
[21] |
曹晓梅, 苗铮, 郝元朔, 等. 基于树种分类的帽儿山阔叶混交林树高-胸径模型[J/OL]. 应用生态学报:1-17(2024-01-12)[2024-02-02].http://doi.org/10.13287/j.1001-9332.202402.016.
|
[22] |
Ercanli I. Artificial intelligence with DNN algorithms to model relationships between total tree height and diameter at breast height[J]. Forest Systems, 2020, 29(2):103.
|
[23] |
Corte A, Souza D V, Rex F E, et al. Forest inventory with high-density UAV-Lidar:Machine learning approaches for predicting individual tree attributes[J]. Computers and Electronics in Agriculture, 2020, 179:105815.
doi: 10.1016/j.compag.2020.105815
|